
http://tinyurl.com/y5d8sh

GPU Point List Generation

through Histogram Pyramids

VMV 2006, VMV 2006, GPU ProgrammingGPU Programming

Gernot Ziegler, Art Tevs, Gernot Ziegler, Art Tevs,

Christian Theobalt, HansChristian Theobalt, Hans--Peter SeidelPeter Seidel

http://tinyurl.com/y5d8sh

Agenda

� Overall task

� Problems

� Solution principle

� Algorithm: Discriminator

� Algorithm: HistoPyramid Builder

� Algorithm: PointList Builder

� Applications

� Future Directions, Conclusion

� (Extra: Feature Detection, Geometry Generation, 3D

Volume, QuadTree)

http://tinyurl.com/y5d8sh

Overall task

� Decompose a 3D model into a point cloud

� Vertices don’t suffice, require minimum sampling density

� Make GPU render 3D model into 3D volume slices

� Problem: 2563 points, many unfilled – find active ones !

New real-time

algorithm

3D model Volume conversion On-GPU point cloud

http://tinyurl.com/y5d8sh

Side problem: 3D to 2D mapping

� NVidia GPUs cannot render into 3D volume textures.

� Solution: Create a 2D mapping scheme for 3D volume.

� Side effect: Following issues become a 2D problem.
“Lattice”: 2D mapping of 3D volume

3D Volume

http://tinyurl.com/y5d8sh

Current problem

� 3D volume is on GPU, find active voxels there

� Require dynamically growing list of point coordinates…

� But: Bus transfers are expensive.

CPU GPU
Volume slicer

3D model

Volume data

Pointlist

Discriminator/List generator
(Dozens Megabytes)

(Kilobytes)
Point Cloud renderer

http://tinyurl.com/y5d8sh

Our solution

� A 2D/3D algorithm which runs on Shader Model 3.0 *)

� See it as data compaction problem (Cell = Pixel/Voxel)

Empty cells are “useless air”, only interesting cells remain.

� Data compaction on stream processors active area of research

(Horn et al, GPU Gems 2; Sengupta et al, Edge Workshop 2006)

CPU GPU
Volume slicer

3D model

Volume data

Pointlist

Discriminator/List generator (Dozens Megabytes)

(Kilobytes)

Point Cloud renderer

*) SM 2.0 possible, but cumbersome

http://tinyurl.com/y5d8sh

Overview, data compaction

http://tinyurl.com/y5d8sh

Algorithm: Discriminator

� Tells active cells from inactive/empty ones.

� Easy criterion in our case: Alpha = 1.

Data input Base level of HistoPyramid

� More complicated discriminators in the paper!

http://tinyurl.com/y5d8sh

Algorithm: HistoPyramid Builder

2

23

1
8

L0
(Base, 4x4)

L1
(2x2)

L2
(Top, 1x1)

R
e
d
u
c
e

Sum cell content
(reduction operation)

R
e
d
u
c
e

1

1

1

1

1

10

0

0

0

0

0 1

1

0

0

� Hierarchically sums up active element count.

� Similar to mip-mapping (w/o averaging).

TOTAL COUNT

OF CELLS !

http://tinyurl.com/y5d8sh

Algorithm: HistoPyramid Builder’s output
TOTAL COUNT

OF CELLS ! :)

Histopyramid for Teapot

http://tinyurl.com/y5d8sh

Algorithm: PointList Builder

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

2

23

1
8

L0

L1

(1,0)

(0,3)

(0,0)

(2,1)

(0,1)

(1,2)

(3,2)

(3,0)

X

: traversal direction

Output:2D Point List

L2

2

6

0

4

1

5

7

3

(8)

Input: Key indices

0

Example traversal,
key index 4

HistoPyramid,
traversal path:

� Traverses HistoPyramid top-down to generate PointList.

(2D texture,

size based on

Total Count of Cells)

http://tinyurl.com/y5d8sh

Algorithm: PointList Builder’s output

� A 2D texture listing active cells’ 3D point coordinates.

� (2D to 3D mapping happens in PointList Builder)

PointList for Teapot.

false colors: 3D positions
Example image,

PointCloud renderer
Done !

Results

� Result: Real-time particle cloud (Art Tevs)

� Result: 3D Volume Analysis

(Vector Field Contours, Tom Annen et al)

http://tinyurl.com/y5d8sh

� Feature detection on GPU

� Geometry generation (SM 3.0 marching cubes)

� Real-time compression

(with e.g. wavelet analysis)

� Conversion to SM4.0, and of course:

“Showdown” with SM4 Geometry Shaders ;)

� Other uses for HistoPyramid

(complete: Region Quadtrees/Octrees on GPU)

� Your ideas ? Discussions welcome !

Future Directions

http://tinyurl.com/y5d8sh

Thank you !

http://tinyurl.com/y5d8sh

HistoPyramids vs. Geometry Shaders

� SM4.0 GPUs now have one option to create lists:

Geometry Shaders.

� Used to delete and create geometry on the GPU.

� Still unclear if HistoPyramids become obsolete:

� Option 1: Route the whole data input through the geometry

shader and let it “weed out” the empty cells.

Vertex shader applied to millions of points ?

� Option 2: Let geometry shader traverse the data input, and

generate geometry for all found cells.

Can geometry shader create more than 1024 points?

http://tinyurl.com/y5d8sh

Problems in GPU Feature detection

� Image analysis: GPU can convolve images.

� Feature points isolation: e.g. thresholding, requires

dynamically growing list of point coordinates…

� GPU as a stream processor cannot generate this, must

download to CPU.

� Bus transfers are expensive, hence:

Speed advantage only for complex convolvements.

CPU GPU
Image convolver

Input image

Convolved image

Feature list

Discriminator/List generator
(Megabytes)

(Kilobytes)

http://tinyurl.com/y5d8sh

Speeding up GPU Feature detection

� We introduce a 2D/3D solution which runs on Shader Model 3.0.

� Make it a data compaction problem (Cell = Pixel/Voxel)

Uninteresting cells are “useless air”,

only interesting cells (feature points) remain

� Data compaction on stream processors

active area of research (Horn, GPU Gems 2)

� Hence:

CPU GPU
Image convolver

Input image

Convolved image

Feature list
Discriminator/PointList Builder

(Kilobytes)

http://tinyurl.com/y5d8sh

Sketch: 3D HistoPyramid

� Each pyramid level is a 3D volume.

� Like in mipmapped 3D volumes, the volumes are halved in size

for every level.

� Thus, every time, 8 cells get reduced into one.

� PointList Builder accesses 3D textures one by one.

� Implementation obstacle:

– Cannot easily generate 3D volume mipmaps on NV40 architecture

without internal copying (Missing render-to-3Dtexture support).

– The alternative, laying out several 3D volumes in one 2D texture, is

very cumbersome and trashes cache behaviour.

http://tinyurl.com/y5d8sh

Sketch: Geometry generation

� At base level, the discriminator calculates nx,y , the number of

intended vertices at each cell (x,y) from neighbor information

(think: Marching Cubes from 3D volume).

� HistoPyramid will sum up the count of all intended vertices.

Intended line geometry
Discriminator:

Vertex creation template &

Example, nx,y, first cells

HistoPyramid base level

1

11 11
11

11

11

11

1
1

1

11
11

11

1

1

11 11
11

11

11

1

0

0

0 0 0 0

0

0

0

0

0

 0

4 6 4 4 4 4 6 4

6 6 6 66 6

6 6 6 66 6

4 8 6 8 8 6 8 4

4 8 8 8 8 4

4 6 6 4

4 6 4 4 4 4 6 4

6 4

2

4 6

2

http://tinyurl.com/y5d8sh

Sketch: Geometry generation

� GeometryBuilder, derived from PointList Builder, will end up

parallelly (nx,y times) at cell (x,y) during top-down traversal.

But it will know this (as it knows the initial index for cell (x,y)), and

thus create the intended [1.. nx,y]-th vertex from a lookup table.

Created HistoPyramid

0

0

0 0 0 0

0

0

0

0

0

 0

4 6 4 4 4 4 6 4

6 6 6 66 6

6 6 6 66 6

4 8 6 8 8 6 8 4

4 8 8 8 8 4

4 6 6 4

4 6 4 4 4 4 6 4

6 4

2

4 6

2

20

26

22 14 14 22

24 20 24

6 26 6

20 8 8 20

80 80

60 424260
280

GeometryBuilder’s vertex creation order

a

c h

f

d
b

g
e

(0,0,g)

(1,0,g)

(0,0,e)

(1,0,d)

(0,0,f)

(1,0,e)

(1,0,h)

(1,0,c)

(0,0,h)

(1,0,f)

(1,1,a) (1,1,b)

(1,1,..) ...

GeometryBuilder’s vertex output list

...

(0,0) (1,0)

(0,1) (1,1)

Above list as geometry

http://tinyurl.com/y5d8sh

Real-time QuadTree analysis

� Vision task: Detect regions with common features

� “Common feature”: Low variance around average color

� Usually very time-consuming, by far not real-time

� Our Answer:

– Extension of GPU point list algorithm

– Only create simple region geometry, region quadtrees

– Typical analysis time: 640x480 in 15 ms

� Useful for:

– Color grouping

– Motion vector clustering

– Acceleration of grid calculations

http://tinyurl.com/y5d8sh

Results

Video frame, Edge analysis, several resultsffkvadrat: Real-time quadtree analysis

(Footage by GusGus, Call of The Wild)

