
Max-Planck-Institut f ür Informatik
Computer Graphics Group
Saarbrücken, Germany

Master’s Thesis in Computer Science

Realistic Real-time Rendering of Refractive Objects

Saarland University

Faculty of Natural Science and Technology I

Department of Computer Science

submitted by

Art Tevs

on July 12, 2007

Supervisor

Prof. Dr. Hans-Peter Seidel, MPI für Informatik, Saarbr̈ucken, Germany

Advisor

Dr. Ivo Ihrke, MPI für Informatik, Saarbr̈ucken, Germany

Reviewers

Prof. Dr. Hans-Peter Seidel, MPI für Informatik, Saarbr̈ucken, Germany

Prof. Dr.-Ing. Philipp Slusallek, Saarland University, Saarbr̈ucken, Germany

Author: Art Tevs

Student number: 2500415

Address: Breslauer Str. 18

66121 Saarbr̈ucken

Statement
Hereby I confirm that this thesis is my own work and that I have documented all sources

used.

Saarbr̈ucken, Juli 12. 2007

(Art Tevs)

Declaration of Consent
Herewith I agree that my thesis will be made available through the library of Computer

Science Department.

Saarbr̈ucken, Juli 12. 2007

(Art Tevs)

Abstract

Physically correct rendering of inhomogeneous refractive objects in real-time is a dif-

ficult task. Many published works which address this problem require either a lot of

computational power or can only reproduce a subset of optical effectsachievable by a

realistic simulation of light behavior inside such structures. In this thesis, we present

a way for real-time rendering of complex refractive objects, described by a volumetric

representation. Our approach enables us to simulate a variety of physicallymotivated

optical effects. The algorithm is based on the eikonal equation, the main postulate of

geometric optics. We derive a system of ordinary differential equations that allows us

to simulate the propagation of light rays through an inhomogeneous refractive index

field. Afterwards, a powerful image formation model provides for sophisticated ren-

dering effects, such as arbitrary varying refractive index, inhomogeneous attenuation,

as well as spatially-varying anisotropic scattering and reflectance properties. We also

propose an efficient wavefront propagation technique, achieved witha complexity of a

particle tracer, which enables us to compute the distribution of differential irradiance

values inside a volume of interest. Efficient GPU implementations enable us to render a

combination of visual effects that were previously not reproducible in real-time.

5

Acknowledgment

I want to thank Prof. Dr. Hans-Peter Seidel for the possibility to work at the Com-

puter Graphics group at Max Planck Institute for Informatik. I also want tothank my

supervisor for the duration of my research assistant job, Dr. Christian Theobalt.

I express deep gratitude to Ivo Ihrke and Gernot Ziegler for their endurance with me

during this project. I thank Naveed Ahmed for supporting me in reviewing the text.

Thanks to Anders Sundstedt and Michael Schantin for their modeling contributions

to the animation demo, created especially for this project. And finally thanks to GusGus

for providing us with the permissions, for using their soundtrack in our project demo.

6

CONTENTS

1 Introduction 9

1.1 Idea . 10

1.2 Algorithm . 10

2 Related works 13

2.1 Ray tracing and Photon mapping approach 13

2.1.1 Ray Tracing . 13

2.1.2 Photon mapping . 14

2.2 Utilizing a streaming processor . 15

2.2.1 GPU-based interactive refraction 16

2.3 Discussion . 17

3 Background 19

3.1 Gradient computation . 19

3.2 Optical Effects . 20

3.2.1 Surface BRDF . 21

3.2.2 Refraction and Caustics . 21

3.2.3 Attenuation and Absorption 22

3.2.4 Scattering . 23

3.2.5 Reflection and Fresnel equation 24

3.2.6 Emission . 25

3.2.7 Dispersion . 25

3.3 Conclusion . 27

4 Light simulation 29

4.1 Ray optics . 29

4.1.1 Light propagation with Snell’s law 30

4.1.2 The Eikonal equation and the ray equation of geometric optics . 31

4.2 Light and wavefront definitions . 32

4.2.1 Light source . 32

4.2.2 Wavefront representation . 33

4.2.3 Wavefront propagation . 34

4.2.4 Irradiance computation . 36

7

Contents

4.3 Conclusion . 37

5 Image Formation Model 39

5.1 General image formation . 39

5.1.1 General volume rendering equation 39

5.1.2 Attenuation and the background 39

5.1.3 Reflection, Scattering and Emission 41

5.1.4 Discretization of rendering terms 42

5.2 Discrete image formation model . 43

5.3 Conclusion . 45

6 Implementation 47

6.1 Input Data . 47

6.2 Light Simulator . 49

6.2.1 Initialization . 49

6.2.2 Wavefront patch propagation 50

6.2.3 Voxelization of wavefront patches 50

6.2.4 Patch list analysis . 51

6.3 View renderer . 52

6.3.1 Ray casting . 53

6.4 Conclusion . 55

7 Results 57

7.1 Objects . 58

7.2 Results . 60

8 Conclusions & Future Work 63

A Anisotropic materials 65

A.1 Birefringence . 66

A.2 e-Ray propagation in uniaxial crystals 67

A.2.1 Refraction and Internal reflection ofe-rays 69

A.3 Absorption/Attenuation . 71

B Formulae 73

C Code Listing 77

8

CHAPTER 1

INTRODUCTION

”In the beginning ... there was light”: these words can be found in a world famous book.

Humans knew from the beginning of time that light is indispensable for our perception

of the environment. Light particles, photons, start their travel from a lightsource and

traverse at immense speed. They are reflected or absorbed by objects before they reach

our eye. These light particles, which are absorbed by our eyes, produce a world full of

beautiful colors on our retina. Our brain is then able to reconstruct the environment in

our mind, so that we can feel the environment visually.

Computer graphics tries to reproduce the behavior of the light in a machine simula-

tion. To achieve very realistic representations, one can attempt to simulate the behavior

of the light based on the actual light particle paths. Having a strong theory of geomet-

ric optics, one can deduce how light particles interact with the environment. However,

due to limited computational power, one has to lower the expectations. Some partsof

the light interaction with the environment can not be simulated and thus the produced

images do not look as realistic as one could see them in the real world.

Objects with complex optical properties are needed for a close simulation of reality

in a virtual environment. A very simple example for a complex object can be a glass of

water. For us, as humans, there is nothing amazing about it and it seems to bea quite

simple object. But to correctly simulate the light interactions with such an object in a

virtual environment is not as an easy task as one might think.

Light particles from a light source have to pass through more than two media (here:

glass, water, air) before they reach our eyes. The light interacts with themedium while

it is travelling through it. At material boundaries or even inside a medium with strong

inhomogenity, the particle can be reflected or change its path in a complex way.Dust

or dirt particles inside a medium can absorb or attenuate light. The absorbedenergy

is later emitted, usually as heat1, in many directions, so that a simple representation of

real-world light interactions is not really possible.

In this thesis we will introduce a general framework able to simulate the complex

light behavior. Most of these effects can be visualized in real-time on commodity graph-

ics hardware. The thesis can be understood as an expansion and a detailed version of the

algorithm presented in [IZT+07].

1Fluorescent and phosphorescent materials emit energy in the visible spectrum [Pri63]

9

Chapter 1. Introduction

Figure 1.1: Glass block with embedded SIGGRAPH logo. The complex behavior of
refraction is combined with a spatially varying attenuation inside the letters. Note the
total reflection on the block boundaries.

1.1 Idea

The main idea of the algorithm is based on a simple set of ordinary differentialequations

derived from theeikonal equation, the main postulate of geometric optics [BW99]. The

eikonal equation| ~▽S |= n describes the spatial distribution of light arrival. The iso-

surfaces of the eikonal solutionS are also called wavefronts.

Using Fermat’s principle, rays become characteristic of the eikonal equation. A

light ray, represented by particles, is always perpendicular to the wavefront. Therefore,

we represent the wavefronts by particles and thus provide a simple way to propagate

the wavefront from a light source through the scene. Particle system can be efficiently

simulated on today’s programmable graphics hardware. The radiant energy, transferred

by the wavefront, can be used to illuminate the scene. In our case, light energy can

also be absorbed by the nature of the object’s material, giving us a possibilityto render

colored objects.

The same idea as for the wavefront propagation is used to cast viewing rays into

the scene. For this purpose, we define a rendering equation which is used to compute

the radiance of the viewing rays. This, combined into a powerful, physicallymotivated

image formation model, allows us to realistically render refractive objects in real-time.

1.2 Algorithm

We represent our refractive objects by a volumetric data structure storing spatially vary-

ing object properties in voxels. Thus, for example, we store the refractive index field,

responsible for spatially varying refraction, as a 3D volumeV . A more detailed descrip-

tion of the implementation of the scene representation using a volumetric data structure,

can be found in Chapter 6.

10

Chapter 1. Introduction

Figure 1.2: Rounded cube consisting of three different glass layers. Light simulator is
capable to compute the irradiance distribution inside the object volume providinga nice
sparkle like structures during the rendering phase.

The rendering process is performed in two steps. First, alight simulator, described

in Chapter 4, pre-computes the irradiance distribution, which is needed to simulate the

scattering of light particles inside a medium. For this we introduce the concept of a

wavefront2. The eikonal equation is used to derive the ordinary differential equations for

the wavefront’s propagation. The computation of the light trajectory through a refractive

medium is based on the properties of geometric optics.

The pre-computed irradiance distribution is used by theview rendererin the second

step to realistically render the appearance of translucent objects in scattering participat-

ing media, such as smoke. For scenes without scattering, we do not require the pre-

computation step, because the represented effects do not depend on thelight distribution

in the scene.

In general, our framework enables us to reproduce a variety of sophisticated effects

on a commodity Shader Model 3.0 graphic hardware. An expressive imageformation

model (Chapter 5) combined with ray propagation theory (Chapter 4) derived from the

eikonal equation, supports the rendering of scenes containing objects with arbitrarily

varying refractive indices. It is also able to handle surface effects witharbitrary BRDFs

and view-dependent single-scattering effects with arbitrary scattering phase functions.

Some of the non-geometric effects, like dispersion, can also be realistically simulated

within the framework. Advanced effects, such as total reflection, are implicitly obtained

at no additional cost. The algorithm achieves real-time viewer performanceon objects

with complex refractive properties consisting of high resolution voxel volume data. The

implementation of our image formation model and the light simulator can be found in

Chapter 6.

2an iso-surface of equal time distance from the light origin

11

CHAPTER 2

RELATED WORKS

This chapter presents a selection of previous work done in the field of rendering of

refractive objects. We show examples, results and discuss the assets and drawbacks of

these algorithms with respect to real-time rendering applications.

2.1 Ray tracing and Photon mapping approach

An intuitive way of simulating light propagation through any kind of material canbe

developed by using a trueray tracingapproach. Ray tracing gives the possibility to sim-

ulate light rays which can be deflected on material boundaries according tothe physical

laws of reflection and refraction.

Most ray tracing algorithms achieve good results by recursively evaluating Snell’s

law at material boundaries. But a continuous computation of refractive events along

arbitrarily varying paths, like in our method, would be computationally very expensive.

To overcome this problem and to be able to render volumetric refractive objects with

continuously varying refractive index, one can use iso-surfaces to simulate boundaries of

different refractive indices in the data. However, such an approachrequires considerable

computation time, since explicit material boundaries, iso-surfaces, have to be computed.

2.1.1 Ray Tracing

One of the first ray tracing approaches used to compute caustics and refractions was

backward ray tracing shown in [Arv86]. The algorithm uses multiple passes and an

illumination map (similar to the photon map) which helps to compute the caustics seen

from the view point.

Stam et al. [SL96] have used, as one of the first, the eikonal equation to trace rays

through non-constant media with a continuously varying index of refraction. The authors

derived the ray equation of geometry optics to handle these media in a standard ray tracer.

Their work is motivated by the rendering of natural phenomena, such as mirages.

There is some interesting work on interactive ray tracing simulation including re-

fractions and caustics. One approach is described in [WBS+02]. It can solve various ray

tracing problems including refractions. The approach is based on a ray tracing simula-

tion. However, for the computation of caustics, they use photon maps, storing irradiance

informations in a 3-dimensional regular grid. The algorithm produces veryimpressive

13

Chapter 2. Related works

Figure 2.1: One of the first synthetic image showing caustics, refractions and reflec-
tions [Arv86]

results, as can be seen in Fig. 2.2. Unfortunately, the algorithm requires more than one

fast CPU, and typically runs on a PC cluster to handle the scene in an interactive mode.

Hakura and Snyder [HS01] propose a slightly different ray tracing approach, which

they call hybrid ray-tracing. The authors combine a standard ray tracing, which simu-

lates complicated ray bouncing off local geometry, with environment maps which cap-

ture the more distant geometry. Furthermore, their algorithm handles refraction and

reflection very well by lowering the costs of computation. The produced results are

appealing, but the algorithm does does not run in real-time.

To increase computation speed some approaches utilize the GPU or other special

hardware. Very exciting work was done by Schmittler et al. [SWS02]. Theydeveloped a

special graphics processing unit which is able to render ray-traced images at interactive

frame rates. Another algorithm, utilizing special hardware, can be found in[Ohb03].

2.1.2 Photon mapping

A simulation in the opposite direction (from light source to the object) can be achieved

using the photon mapping approach. Photon mapping was first introduced by H. W.

Jensen [Jen96]. It is probably the most intuitive way to implement light propagation.

In photon mapping the photons are sent out into the scene from the light source.

Whenever a photon intersects with a surface it is stored in so called photon map which

is usually a hierarchical tree structure, e.g. a kd-tree. If the photon continues bouncing,

a new propagation direction of the photon is computed. The photon map is usedduring

the rendering to estimate the density of accumulated photons, as an estimate for the local

irradiance.

14

Chapter 2. Related works

(a) (b)

Figure 2.2: (a) Realistic refractions and caustics rendered at 2.5 frame per second on
8 client machines [WBS+02] (b) Caustic computed by the photon mapping approach
described in [Jen01]

Rendering of realistic caustics, as with the photon mapping approach, is related to

the problem of refraction rendering. An interesting solution of the caustic rendering

problem with a photon mapping approach is described in [GWS04]. They parallelize

the photon mapping algorithm to achieve interactive frame rates across commodity PCs.

Their solution is attractive, especially for the realistic rendering of caustics. But the

algorithm requires a PC cluster with up to 36 CPUs. The computed results are realistic,

but due to the strong requirements on computational power, this method is not suitable

for everyday realistic refraction simulation.

2.2 Utilizing a streaming processor

Recently, researchers have ported native ray tracing or photon mapping algorithms

to graphics hardware to achieve real-time performance. Some research on graphics

hardware algorithms has explored the idea of simulating global illumination. Ma et

al. [MM02] propose a technique to approximate nearest neighbor search in the photon

map on a GPU using a block hashing scheme. Their scheme is optimized to reduceband-

width on the hardware, but requires processing by the CPU to build the datastructure.

Carr et al. [CHH02] and Purcell et al. [PBMH02] use the GPU to speed up ray tracing.

Purcell et al. [PDC+03] show a stream processor implementation for the photon

mapping algorithm. Their implementation uses breadth-first photon tracing to distribute

photons using the GPU. The grid-based photon map is constructed directly on the graph-

ics hardware. The results are very impressive, however they can nothandle volumetric

caustics and inhomogeneous refractive materials.

15

Chapter 2. Related works

Figure 2.3: Photon mapping computed on the GPU by [PDC+03]

A similar idea was presented by Purcell in his dissertation [Pur04]. He changed the

data structure for the photon map to a uniform grid, which can be constructed directly

on the hardware. In addition he uses recursive ray tracing for specular reflection and

refraction. His ray tracer uses the kNN1-grid photon map to compute caustic effects.

2.2.1 GPU-based interactive refraction

Since the common graphics hardware has become programmable, it has beenattempted

to port CPU-based algorithms to the new hardware . As already mentioned in the previ-

ous section, there are multiple algorithms implementing ray tracing or photon mapping

on a stream processor like a GPU.

The first refraction effects shown on the GPU were very simple and not physically

correct. There, a light ray (in most cases the ray between view point and apoint on the

mesh surface) is refracted only once. However, in many cases this doesnot suffice and

at least double refraction is required.

One approach was introduced by Wyman [Wym05a]. The method can approximate

refraction effects in real-time on the GPU. An extension of this algorithm for nearby

geometry was presented in [Wym05b]. Another interesting approach is shown by Wand

and Strasser [WS03]. They suggest to compute reflective caustics by approximating

surfaces with uniformly sampled light sources.

Wyman and Davis [WD06] propose an interactive image space technique to approx-

imate caustic rendering on the GPU. The authors use a traditional two-pass rendering

approach similar to photon mapping. In the first pass, the photons are emitted and their

contribution is stored in a buffer by rendering the scene as it was seen bythe light source.

1k-nearest neighbors

16

Chapter 2. Related works

In the second pass, the photons are gathered by an image-space nearest neighbor search.

The rendering is performed in real-time, but is limited to point light sources anddoes

not consider volumetric scattering effects.

Shah et al. [SK07] propose a full GPU implementation of an image-space technique

for real-time caustic rendering. The authors create a caustic-map texture by splatting the

vertices of a refractive object onto the receiver’s geometry. The rendering is performed

in real-time and does not require any pre-computation. However the approach can not

reproduce volumetric caustics and is limited to homogeneous refractive media.

Hu and Qin [HQ07] present an interactive, image-based approach forthe render-

ing of reflection, refraction and caustics. The method implements double refraction by

computing the refraction vector on the determined back-face and front-face of the re-

fractive object. Furthermore, a new method for nearby geometry rendering is proposed.

However the method works only on objects with constant index of refractionand is not

capable of simulating volumetric effects, such as volume caustics or scattering.

2.3 Discussion

In contrast to these GPU techniques, we employ a more general model of lightray

propagation through continuous refractive media. Similarly, computation of the irra-

diance distribution in the scene volume enables us to reproduce volumetric effects, e.g.

anisotropic scattering or volumetric caustics. A powerful implementation of ourimage

formation model gives us the possibility to render various additional effects, such as dis-

persion, emission, scattering, BRDFs and spatially varying attenuation within acommon

framework.

Adaptive wavefront tracing also enables us to simulate error-bounded,non-linear

light transport with the complexity of a particle tracer. The computation time during

the update, which is required if the light position changes, is comparable to other state-

of-the art GPU methods reproducing fewer effects, e.g. only caustics inisotropic me-

dia [EAMJ05].

Nevertheless our algorithm is in other aspects not as powerful as some ofthe related

approaches, i.e. photon mapping, which can produce full global illuminationsolutions.

The disadvantages of a volumetric scene representation make our method onlysuitable

for spatially confined refractive objects. However, the rendering performance and the

wide range of reproducible, physically plausible2, realistic looking effects benefits from

the simplicity and generality of our method.

2within the limits of geometrical optics, see [BW99] for details

17

CHAPTER 3

BACKGROUND

In this chapter we will explain the basics of geometric optics and some of its aspects

used in our approach. We will describe particular optical effects which can be simu-

lated with our algorithm. Some equations used in the further computations will also be

presented and explained in an intuitive way. We complement with an introductionto

gradients computation, which are required to derive valid ray equations presented in the

next chapter.

3.1 Gradient computation

The gradient of a scalar field (i.e. spatially varying refractive index field) is a vector

field, calledgradient field, and is defined as (in cartesian coordinates):

~▽n(x, y, z) = (
dn

dx
,
dn

dy
,
dn

dz
),

wheren(x, y, z) = n defines the refractive index field. There exist several methods

to calculate gradient vectors. In our approach we are using the most common method,

central differences. This method estimates the derivative by calculating the first terms of

a Taylor expansion.

~▽f(x, y, z) ≈ (
f(x + △x, y, z) − f(x −△x, y, z)

2 △ x
,

f(x, y + △y, z) − f(x, y −△y, z)

2 △ y
,

f(x, y, z + △z) − f(x, y, z −△z)

2 △ z
)

(3.1)

In our data representation we are using the six neighbor voxels, i.e. refractive indices,

to compute the gradient at position(x, y, z).

Due to its nature, a gradient points in a direction normal to the iso-surface offunction

f . In our case, the iso-surface of the refractive index functionn can be interpreted as

the boundary between different media. Thus, the gradient~▽n becomes indicative of an

object’s surface normal. However, by using discrete input data (e.g.n1 = 1 for air and

n2 = 1.5 for glass sampled at discrete positions in space(xi, yi, zi)), we only receive

discretized normals. The gradient directions are thus only pointing in a discrete number

19

Chapter 3. Background

(a) (b)

Figure 3.1: Wine glass object consisting of 128x128x128 voxels. (a) Refractive index
field was pre-smoothed before computing the gradients. (b) No smoothing: Glass ap-
pears blocky. Note how the smooth filtering unintendedly expands the boundaries.

of directions. This leads to the restriction that smooth surfaces can not be represented

properly. To overcome this problem, we either have to use more samples, requiring more

processing power and memory, or we have to smooth the gradients (Fig. 3.1).

We use a simple three-dimensional smoothing operator to pre-smooth the refractive

index field. The operator is a three dimensional convolution kernel, which isapplied a

priori to the volumetric object representation. The convolution kernel canbe computed

by a three dimensionalGaussian functionas following:

g(x, y, z) = e−((x−xo
σ

)2+(y−yo
σ

)2+(z−zo
σ

)2). (3.2)

For the standard deviations of the filter kernel we typically use values between 0.5

and 1 voxels, resulting in object boundaries which extend over 2-3 voxels. This yields a

so calledhalo-effect, produced by interpolated refractive indices on object boundaries.

Other methods are equally valid for gradient computations, like a three dimensional

Sobel operator [SHB99]. In general a good smoothing operation on refractive indices is

indispensable to provide smooth surfaces.

3.2 Optical Effects

In this section we introduce the optical effects which can be simulated with our approach.

We show, in short, how these effects arise in real life and describe how they can be

simulated within our framework. Furthermore we define a light ray as a travelpath of

light particles (i.e. photons).

20

Chapter 3. Background

3.2.1 Surface BRDF

Thebidirectional reflectance distribution function(also called justBRDF) describes the

ratio of reflected radiance to the irradiance incident on the surface. TheBRDF is a

material property of the viewed surface. The common definition of the BRDF,has the

form:

fr(θi, φi, θr, φr) ≡
dLr(θr, φr)

Li(θi, φi) cos θidωi
, (3.3)

where(θr, φr) is the direction of reflected radianceLr, (θi, φi) is the incident direc-

tion of the irradianceLi anddωi is a differential solid angle in the incident direction.

The BRDF can either be described by mathematical models or measured for partic-

ular directions and interpolated inbetween. The BRDF obeys the Helmholtz reciprocity

principle, i.e. the BRDF remains unchanged if the incoming and outgoing directions are

interchanged.

Based on the BRDF, one can define varying surface properties and hence simulate

different material surfaces. The ratio between reflected and incident radiance could also

be used beyond the Fresnel reflection (Sect. 3.2.5) to simulate more specificmaterials

that can not properly be handled by the Fresnel equations.

3.2.2 Refraction and Caustics

Refraction is the directional change of a wave due to a change in its speed.In optics, re-

fraction occurs on the boundary between two mediums with different refractive indices.

For example, a light ray refracts when it enters and leaves a glass. The strength of the

refraction depends on therefractive indicesof the two media bordering the boundary

and the angle between the light ray and the line normal to the surface separating the two

media (Fig. 4.1). A good optical example for this, is the view inside a bowl of water.

Air has a refractive index of just over 1, and water has a refractive index of about 1.3.

A straight object, e.g. a ruler, placed partially in the water, will appear to bend at the

water’s surface (Fig. 3.2 (a)).

Refraction is also the cause for caustics. Caustic effects appear, whena light beam,

propagating through a refractive medium, is being focused. The method wepresent here

uses this relation to create realistic caustics. If a participating medium, e.g. smoke,

is present in the scene, light can be scattered in all directions at a certain scene point

(Sect. 3.2.4). Thus, if the object material through which the light is propagated focuses

the light, we obtain visible volume caustics (Fig. 3.2(b)). To create surface caustics we

21

Chapter 3. Background

(a) (b)

Figure 3.2: (a) A real world photo showing the refraction effect. The light rays are bent
as they cross from water to air. (b) Volume caustics created by propagating light particles
through a glass sphere. Notice how the light rays are being focused [Jen01].

simply intersect a 3D surface mesh with the computed, volumetric irradiance distribu-

tion.

3.2.3 Attenuation and Absorption

In physical optics,absorptionis a process where the energy of a photon is transfered to

another entity, for example an atom. The effect is common and can be seen everywhere

in our daily life. Almost any object absorbs some portion of incoming light, whichmakes

us see it in different colors. For example, the ink of the text in this paper absorbs almost

all light frequencies, giving an impression of black color. In refraction, the translucent

absorption of light during light propagation is also calledattenuation.

Attenuation is the process of decreasing intensity of an electromagnetic radiation due

to absorption or scattering of photons. We define attenuation as a scalar field σa for each

color component, describing how much of a certain wavelength (color) is attenuated at

the point~x = c(t), during the propagation of the rayc.

Since the light ray has to propagate through a medium with some thickness, we can

define the attenuation factorα(t, c) according to theabsorption law:

α(t, c) = L0 · e
−µ·d.

HereL0 is the initial radiance on the rayc, µ is the absorption constant, also called

absorbance, andd is the thickness1 of the medium.

Now in order to simulatespatially varyingattenuation, we have to change the equa-

tion slightly to

1here:d is the optical path length of the rayc

22

Chapter 3. Background

(a) (b)

Figure 3.3: (a) Scattering occurs when light originating at the light sourcescatterson
material impurities, e.g. dust particles. (b) Wine glass showing refraction and attenua-
tion. Wine attenuates green and blue components of the light resulting in a red colored
fluid.

α(t, c) = L0 · e
−

R t

0
σa(c(s))ds. (3.4)

The function describes the exponential attenuation of radiance on curve(ray) c(t)

due to a spatially varying attenuation functionσa. We will use this formulation later in

Chapter 5 to define the complete image formation model. An example of attenuation can

be seen in Fig. 3.3(b).

3.2.4 Scattering

In physics,scatteringis a process where some forms of radiation are forced to deviate

from a straight trajectory by some localized non-uniformities in the medium through

which it passes. In optics a light ray is split2 into an infinite number of rays upon inci-

dence on a scattering particle. To imagine scattering, one can think of small dust particles

which reflect the incoming light in all directions (Fig. 3.3(a)). Scattering alsohelps us to

see volumetric caustics directly, since it can be used to simulate fog or dust in the scene

volume (Fig. 3.2(b)).

In our approach, we are using an anisotropic scattering phase function. A complete

scattering function is currently not suitable for efficient GPU implementation. Therefore

we apply an approximation, presented by Henyey and Greenstein [HJ41], which depends

on only a few parameters:

p =
1 − g2

2(1 − 2g cos θ + g2)3/2
. (3.5)

2based on Huygen’s Principle a new wavefront is created at a scatteringcenter

23

Chapter 3. Background

(a) (b)

Figure 3.4: Black glass sphere reflecting the environment. The sphere’smaterial absorbs
almost the whole light energy such that only the reflection on the surface is visible. (a)
Native reflection (b) Fresnel reflection. Note the use of fresnel equations improves the
realism of the scene.

g is the anisotropy factor andθ is the angle between the ray~x and local light direction

~v. The anisotropy factor is defined as one of the properties of the scene and can vary

spatially.

3.2.5 Reflection and Fresnel equation

Reflection is probably the most intuitive effect of our daily life. We speak about light

reflection, when the wavefront changes its moving direction on an interface between two

media without leaving the propagating one. When light moves from a medium of agiven

refractive indexni into a second medium, with refractive indexnt, both reflection and

refraction of the ray may occur.

Since the light ray refracts and reflects on the border between two media, itis divided

into two rays3. The sum of the radiance, transported by the two light rays, stays equal

to the radiance of the incident ray. How the energy is split up can be approximated via

the Fresnel equation. It describes the behavior of light as it moves between media of

different refractive indices. The fraction of the reflected radiance,is given by thereflec-

tion coefficientR, and the fraction of refracted radiance, by thetransmission coefficient

T .

The amount of reflection is computed with

R =
ni cos θi + nt cos θt

ni cos θi − nt cos θt
(3.6)

and the transmission fraction is consequently

3depending on the critical angle total reflection may occur and the ray is notsplit

24

Chapter 3. Background

(a) (b)

Figure 3.5: (a) Real world photo of dispersion phenomenon on a prism [MS] (b) Em-
ulated dispersion effect with a three-pass computation of color components red, green
and blue.

T = 1 − R.

ni andnt are the refractive indices of the incident and transmitting media.θi is

the angle between the incident ray and the interface normal andθt is the angle between

transmitted ray and the normal.

The refraction coefficient depends on the polarization of the light, but in computer

graphics it is common to ignore polarization. It is also common to ignore the Fresnel

reflection of conductive materials (i.e. metal), since the amount of reflectance varies so

little that the human eye has problems to detect them.

Fig. 3.4 shows the difference between native and Fresnel reflection.

3.2.6 Emission

In optics, emission is a physical process where light energy, i.e. photons,are released

from another entity. In our case, we define emission as a scalar fieldLe(~x) for each

color component. The value is also calledemittanceand quantifies how much radiance

is emitted. Theemitted radiancedepends on the position~x and can be evaluated given

volumetric descriptions of its distribution.

3.2.7 Dispersion

In optics,dispersionis the effect of separating the light ray4 into its spectral components

with different wavelengths. The effect occurs because of the different speed of light for

different wavelengths.

4e.g. a white colored light ray is composed of different colored rays

25

Chapter 3. Background

The common consequence of dispersion is the separation of white light into its color

components (i.e. color spectrum). For example, this happens with water drops in the air,

which is why we are able to see a rainbow. Another common example is a prism.

The equation to compute the wave speed in a medium is

v =
c

n
,

wherec is a constant (i.e. speed of light in vacuum) andn is the refractive index.

In general the refractive index is a function of the light wavelengthλ, son = n(λ).

The wavelength dependency is usually quantified by empirical observations. For visible

light, most transparent objects have some order for wavelength and refractive indices:

1 < n(λred) < n(λgreen) < n(λblue)

or in other words
dn

dλ
< 0.

This is also callednormal dispersion, due to decreasing refractive index by increasing

wavelength.

We use pseudo-multi-pass-rendering5 to compute the radiance for each color com-

ponent. The more passes we use, the more colors we can simulate, yielding increasingly

better approximations of the dispersion effect. We use the dependencies above and ap-

proximate the refractive index equationn = n(λ) for each pass, by using the empirical

relationship, also known asCauchy’s equation[BW99]. The equation however, works

only well for areas with normal dispersion in the visible wavelength region, but this is

sufficient for our purpose. We use a two-term equation of the form:

n(λ) = A +
B

λ2
, (3.7)

whereA andB are the coefficients of a material. The coefficients can be determined by

measuring refractive indices of known wavelengths.

Having this information available, we are now able to create refractive indexfields

for each of the relevant wavelengths. If scattering is required, a multi-pass pre-

computation of radiance distributions for each of the color components is performed.

The succeeding rendering step then results in the effect of dispersion.Fig. 3.5 shows a

three-pass rendering for the colors red, green and blue.

5we compute simultaneously the results for each color component in the fragment shader while render-
ing the scene volume.

26

Chapter 3. Background

3.3 Conclusion

This chapter has demonstrated a variety of optical effects that are all based on the ge-

ometric model of light. With the help of multipass rendering we can also provide an

emulation of advanced effects like dispersion, for example.

We introduced the concept of gradients and have shown how they can becomputed.

Prior to gradient computation we have to smooth the refractive index volume to provide

smooth objects, excluding the use of high resolution data. However, due to the smooth-

ing we get blurry object boundaries which unfortunately affect the realism of the scene

negatively. Here one has to take care not to ”over-smooth” the scene.

By handling reflectance properties with the help of Fresnel equations andBRDFs,

we are able to render the refractive and reflective objects in a more realistic way than

before. An approximation of the anisotropic scattering function gives us the possibility

to simulate various volumetric effects like fog, shadows, and caustics.

Since almost all parameters may vary spatially, we are able to simulate the light prop-

agation more precisely than other algorithms. The formulations of the specific effects

shown here help us to derive a proper image formation model which can be efficiently

implemented on common graphics hardware. In the following chapter we now derive a

ray equation to propagate the light through the scene volume.

27

CHAPTER 4

L IGHT SIMULATION

This chapter starts off with an introduction to the basics of ray optics1. We continue

with introducing a wavefront representation for light sources. We will present the

eikonal equationand describe how this equation can be used to simulate light propa-

gation through the scene volume. The derived first order ordinary differential equations

for the light ray propagation assist in understanding how light travels through a medium

with spatially varying refraction. Finally, we will show how to gather irradiance values

out of the wavefront to compute the illumination in the scene.

4.1 Ray optics

Geometric optics, or ray optics, describes light propagation in terms of ”rays”. Rays are

bent at the interface between two dissimilar media, and may be curved in a mediumin

which the refractive index varies in space. Its geometry thus depends on3D position

(inhomogeneous refractive index field). The ”ray” in geometric optics is the path for a

single light particle. A ray is perpendicular to the wavefronts of the actual light waves.

Geometric optics provides rules for propagating these particles through anoptical system

and thus describes how the actual wavefront will propagate. Note that this is only a

simple model to describe light propagation. It fails to account for other optical effects

such as diffraction and polarization.

Forward or backward ray tracing approaches use this model to trace light through the

scene back to the light source or to the view point. Similarly, photon mapping algorithms

make use of this model to describe how the photons move along the optical paths.

In our algorithm we will propagate wavefronts based on this ray definition.A wave-

front is an iso-surface of constant travel time originating from a light source. Due to

Fermat’s Principle, we can use ray optics for wavefront propagation, since light rays

always travels normal to these wavefronts (Sect. 4.2).

Due to the computational discretization we are not able to define the wavefront con-

tinuously. Therefore, we break the wavefront into a number ofwavefront patches. Each

wavefront patch represents a part of the wavefront as a small area holding a fraction of

the light wave energy (Sect. 4.2.2).

1we handle here only opticallyisotropicmaterials [BW99]; foranisotropicmaterials see appendix A

29

Chapter 4. Light simulation

normal

interface

P

Q

O

indexn1 n2

θ1

θ2

Figure 4.1: ¡¡¡¡¡¡¡ .mine Snell’s law; The propagation time of light from P to Q ismin-
imal, if the sines of the ray angles in different media are in ======= Snell’s law; The
propagation time of light from P to Q is minimal, if the sines of the ray angles in different
media are in ¿¿¿¿¿¿¿ .r48 proportion to the refractive indices.

4.1.1 Light propagation with Snell’s law

Fermat’s Principle states thatthe path taken by a ray of light between two points is the

path that can be traversed in the least time. Sometimes this is actually used as the

definition for the ray of light. The principle can be used to derive the law of refraction

known as Snell’s law:

n1sin(θ1) = n2sin(θ2). (4.1)

¡¡¡¡¡¡¡ .mine This equation gives us the possibility to compute a vector of the refrac-

tion direction at the boundary of a medium. However, when light moves from adense

to a medium of lower density, such as from water to air, wheren2

n1
≤ 1, Snell’s law

can not be applied. At this point, light is reflected in the incident medium, knownas

======= This equation gives us the possibility to compute a vector of the refracted ray

direction at the boundary of a medium. However, when light moves from an optically

dense medium to a medium of lower density, such as from water to air, wheren2

n1
≤ 1,

Snell’s law can not be applied, i.e. if the incident angle exceeds the so calledcritical

angle. At this point, light is reflected back into the incident medium. This behavior is

known as ¿¿¿¿¿¿¿ .r48internal reflectionor total reflection.

If the refractive index of a medium is not constant, but varies with position,then the

material is known as agradient-index medium. In our case, we define thescene volume

V as a gradient-index volume storing gradients of refractive indices in voxels.

Assume now that we want to simulate the propagation trajectory of a light rayc

through a scene volumeV . A possible implementation is to apply Snell’s law at medium

boundaries. Furthermore there must be a check for the critical angle, to apply the reflec-

30

Chapter 4. Light simulation

tion law if the critical angle is exceeded. This can be avoided if another, moregeneral,

formulation for the propagation of light rays is used.

4.1.2 The Eikonal equation and the ray equation of geometric optics

In physics, light is described by a complex wave equation, varying over space and time.

Theeikonal equation[BW99]

| ~▽S |= n, (4.2)

is obtained from the wave equation by letting the wavelength go to zero and taking the

limit. S(~x) is a real scalar function of position defining the optical path. The functionS

is also calledeikonal.

The surfaceS(~x) = const is called(geometrical) wavefrontand describes an iso-

surface of constant travel time of light from a light source. Equation 4.2 states that the

magnitude of the wavefront gradient2 is the refractive index.

Let us now derive3 an equation for ray propagation in a refractive index field4. In

accordance with Fermat’s principle, light rays propagate perpendicularto the wavefronts.

A ray in space can be defined as:

~x = ~x0 + s~u

⇔ ~u =
d~x

ds
. (4.3)

We assume| ~u |= 1. Since the gradient of the wavefront points in the direction of~u,

with magnituden, we can write

~▽S = n~u = n
d~x

ds
⇔

~▽S

| ~▽S |
=

d~x

ds
(4.4)

Taking the gradient of the squared eikonal equation we get:

~▽(~▽S)2 = 2~▽S · ~▽(~▽S) = 2n~▽n. (4.5)

Based on the definition of the nabla operator and applying the chain rule forseveral

variables we have:
d

ds
~▽S =

d~x

ds
· ~▽(~▽S). (4.6)

2in contrast to Born and Wolf we are using~▽ (nabla operator) as the notation for a gradient vector, so
grad(f) = ~▽f

3The derivation follows [BW99]
4we define the refractive indexn asn = n(~x) and stay in cartesian space.

31

Chapter 4. Light simulation

Combining now Eqs. 4.4, 4.5 and Eq. 4.6 yields:

2~▽S · ~▽(~▽S) = 2n
d~x

ds
· ~▽(~▽S) = 2n

d

ds
~▽S = 2n

d

ds
(n

d~x

ds
) = 2n~▽n

Dividing by 2n gives:
d

ds
(n

d~x

ds
) = ~▽n. (4.7)

The equation describes the trajectory of a light ray in an inhomogeneous refractive

index fieldn(~x) and is known as the ray equation of geometric optics. A simple substi-

tution of d~x
ds = ~w

n gives us the following set of first order ordinary differential equations:

d~x

ds
=

~w

n
, (4.8)

d~w

ds
= ~▽n. (4.9)

ds defines an infinitesimal step in the direction of the ray. Equation 4.8 further provides

us with a constant spatial step size parameterization, since| d~x
ds |= 1. This is advanta-

geous for rendering, where the number of particle trajectories should beapproximately

equal to get optimal performance.

4.2 Light and wavefront definitions

The derived Eq. 4.7, based on geometrical optics from Sect. 4.1.2, gives us a relatively

simple way to simulate a light ray propagating through an inhomogeneous refractive

index field. But for a complete simulation we need to model the light source and its

wavefront as well.

4.2.1 Light source

A light source emits photons which propagate through a medium, according to the laws

of physics, until they reach our eye. The same idea is used by ray tracing(Sect. 2.1.1)

and photon mapping (Sect. 2.1.2) to simulate the light.

In contrast, we define the light source as an emitter of a wavefront. The lightsource

is associated with a vector field describing thelocal light directionv(~x) = ~v and a 3D

scalar field ofdifferential irradiance values∆Eω(~x). The local light direction can be

seen as the travelling direction of a single photon. The differential irradiance value,

32

Chapter 4. Light simulation

Figure 4.2: 2D illustration of our complex image formation scenario – due to inhomoge-
neous material distribution, light rays and viewing rays are bent on their way through the
scene volumeV . Light rays always travels orthogonally to the light wavefronts. Light
wavefronts are the iso-surfaces of constant travel time from the light source.

sometimes also calledintensity, describes the energy stored in the wavefront.

4.2.2 Wavefront representation

We see the wavefront as an iso-surface of points, in our case photons, having the same

phase or constant travel time, originating from a light source. The simplestform of a

wavefront is aplane wave. The corresponding rays are parallel and their direction is

perpendicular to the wave. We use such a wavefront to model a directional light source.

A spherical wavefront, described by a sphere of radiusR, defines a point light source5.

Later, we use these representations to initialize a wavefront before it propagates through

the scene volume.

We define the wavefront as an adaptive set of inter-connected particles (patches)

propagating independently through the scene volume. The connectivity information is

needed for differential irradiance computation (Sect. 4.2.4) and error bounding. The

wavefront is discretized into so-called wavefront patches. The local light direction~v is

represented by the travelling direction of a particle and the differential irradiance value

∆Eω(~x) can be computed from the area of the wavefront patch. Fig. 4.2 illustrates an

example constellation of a point light source and its wavefronts in a scene volume.

5since the radius of a point is equal 0, we set the initial radius of a spherical wavefront toR = ε, so that
it covers the scene volume

33

Chapter 4. Light simulation

4.2.3 Wavefront propagation

In the previous section we have defined a wavefront as an adaptive set of connected

points, or patches. The corners of a patch are given by the four neighboring particles.

These are propagated through the inhomogeneous refractive index field. In case the

wavefront becomes under-resolved, new particles/patches are generated by subdividing

the corresponding patch to preserve a minimum sampling rate. We also define awave-

front patch as a container of some finite differential irradiance∆Eω(~x). Due toattenu-

ation, defined as a scalar fieldσa, the irradiance can be consumed by the corresponding

scene voxel. In real life the same effect can be seen in colored glass. Somewavelengths

are attenuated, so that only the colors passing through can reach our eye.

In the end, we obtain an irradiance distribution over a scene vol-

ume, produced by a propagating wavefront based on the assumption that

the energy of a patch is absorbed by scene points. The computation of

such a light distribution is performed with the following pseudo algorithm:

- dt = time step

- while in volume

- propagate wavefront by timedt

- compute irradiance of wavefront patches

- voxelize data

- refine wavefront

In case a wavefront patch does not touch a voxel with its corner particles, the voxel’s

refractive index does not influence the propagation of the patch. Hence the wavefront

would not be simulated correctly if a patch was larger than one voxel. To alleviate

this, we adaptively split a wavefront patch once it grows too large (Fig. 4.3). To be

able to voxelize the irradiance distribution we equate the wavefront patches with their

midpoints, and store the differential irradiance value and local light direction(patch

direction) into the current voxel.

Propagating the patch particles with the derived equations (Sect. 4.1.2) would break

the wavefront, since its particles would go out of phase. This means that particles de-

scribing a wavefront patch and propagating through a medium while taking constant

spatial steps destroy the equitemporal nature of the wavefront patch. This phenomenon

comes from different propagation ”speeds” (or in other words; different temporal steps

34

Chapter 4. Light simulation

(a) (b)

Figure 4.3: Adaptive wavefront refinement. (a) 2D illustration: the wavefront is repre-
sented by particles (red dots) that are connected to form a wavefront (blue lines). While
advancing through the voxel volume (shown in gray) the wavefront is tessellated such
that its patches span less than a voxel. (b) 3D illustration of the tessellation forone
wavefront patch.

for the same distance) of particles inside a medium. The curvature of a wavefront patch

would break and lead to unwanted results (e.g. the patch area is wrong). Asolution for

this issue would be a scheme for wavefront curvature tracking as shownin [MH92].

Another solution is to derive an equation providing constant temporal steps for the

ray equation. This means, that we would like to have an equation giving us thepossibility

to specify a temporal stepdt instead of a spatial stepds to propagate the wavefront

particles through the scene volume. We are thus looking for a parameterization where:

dS

dt
= ~▽S ·

d~x

dt
= 1, (4.10)

so that infinitesimal changes of the eikonal functionS with respect to parametert are

constant.

Inserting Eq. 4.4 into Eq. 4.10 and applying the chain ruledf
dy = df

dg
dg
dy yields

n
d~x

ds
·
d~x

dt
= 1

⇔
d~x

ds
·
d~x

ds

ds

dt
=

1

n

35

Chapter 4. Light simulation

We already know from the eikonal equation thatd~x
ds =

~▽S

|~▽S| . Therefore we can follow

from the equation above that:
d~x

ds
·
d~x

ds

ds

dt
=

1

n

⇔
~▽S

| ~▽S |
·

~▽S

| ~▽S |

ds

dt
=

1

n

⇔
ds

dt
=

1

n
(4.11)

This is a nice result, because now we can re-parameterize Eqs. 4.8 and 4.9to use

the constant temporal instead of constant spatial step size. Applying the chain rule and

substituting the results above yields

d~x

dt
=

d~x

ds

ds

dt
=

~w

n
·
1

n
=

~w

n2
(4.12)

and

d~w

dt
=

d~w

ds

ds

dt
= ~▽n ·

1

n
=

~▽n

n
(4.13)

Combining both equations, by solving for~w, we get the ray trajectory equation for

a constant temporal step size,

n
d

dt
(n2 d~x

dt
) = ~▽n (4.14)

This formulation gives us the possibility of a fast GPU implementation for the wave-

front propagation by using a modified particle system. Once the wavefrontcan be

tracked over time, we can compute differential irradiance values at everypoint in space

from the area of the connected particles.

4.2.4 Irradiance computation

Irradiance is a radiometry term for the incident power of electromagnetic radiation at

a surface, per unit area. If a point source radiates light uniformly in alldirections and

there is no absorption, then its irradiance drops off in proportion to the distance from the

object squared, since the total emitted power is constant and it is spread over an area that

increases with the square of the distance from the source [DBB06].

In other words, irradiance describes energy per surface area fora given incident

radiation. Our light source’s irradiance is stored in a wavefront. Therefore, each patch

in the wavefront is initialized with some initial irradianceEω0, depending on the light

36

Chapter 4. Light simulation

dS1

dS2

t0

t1 t2

t3

A0
A3

Figure 4.4: The intensity law of geometric optics (left) and its discretized version (right)
in the form of astream tube. The product of area and differential irradiance is constant
along a tube of rays.

source. By propagating through space, the irradiance value of a patchcan grow larger or

smaller, depending on the patch area. This is also known asintensity law of geometric

optics [BW99], see Fig. 4.4. The law states that the energy in a ray tube is always

constant:

dEω1dS1 = dEω2dS2 (4.15)

We can thus see, that by increasing the areadS2, the corresponding energydEω2 has to

be decreased. Therefore, the energy is indirectly proportional to the area of a wavefront

patch6. With this information and Eq. 4.15, we can deduct a discretized version:

∆Eω(t)A(t) = ∆Eω(0)A(0) ⇔ ∆Eω(t) =
∆Eω(0)A(0)

A(t)
(4.16)

where∆Eω(0) denotes the initial irradianceEω0 andA(0) the initial surface area of a

wavefront patch. As already mentioned, these values are set once during initialization

and depend on the properties of the light source and dimensions of the wavefront.

The wavefront patch is spanned by four particles representing its corners

(Sect. 4.2.2). Due to the connectivity information on the particles, we can compute

for every timet the surface area of a wavefront patchA(t). Hence we can also compute

the discretized differential irradiance value∆Eω(t) associated with a wavefront patch at

time t.

4.3 Conclusion

In this chapter we have shown some basics of geometric optics. We have described a

way of using Snell’s law to simulate light transport through a refractive index field.

6area of a wavefront patch in Fig. 4.4 isAi

37

Chapter 4. Light simulation

Afterwards, we introduced the concept of light wavefronts. With the helpof the

eikonal equation| ~▽S |= n and Fermat’s principle we were able to derive the ray

equation of geometric optics, Eq. 4.7, for a massless particle travelling through an in-

homogeneous refractive index field. We use this principle to compute viewingrays,

implementing a ray casting approach.

We defined the light source as an emitter of a light wavefront. The wavefront is an

adaptive set of patches, with corners represented by particles. The particles are then

propagated through the scene volume to compute the irradiance distribution. For up-

dating the wavefront patch positions and sizes we have used Eqs. 4.12 and 4.13. This

was done to keep the temporal step size constant. Finally, we have shown a simple way,

based on the intensity law of geometric optics, of computing the differential irradiance

values of the wavefront patches.

The equations derived in this chapter allow for an efficient GPU implementation,

which, combined with a proper image formation model, enables a realistic rendering of

refractive objects in real-time.

38

CHAPTER 5

IMAGE FORMATION MODEL

In the previous chapter we have introduced the basics of geometric optics and presented

how a light wavefront can be propagated efficiently through the scene volume. In this

chapter we will introduce the image formation model used for the radiance computation

of the viewing rays. We derive an image formation equation for our approach, and

present a simplified form ready to be implemented on the GPU.

Another issue will be to show which effects can be simulated with the stated model.

We will also present some results, giving an impression of how different effects, included

one by one in the image formation model, contribute to the realistic look of the scene.

Finally a pseudo code version of our implementation will be presented.

5.1 General image formation

5.1.1 General volume rendering equation

We have previously defined our scene volume as a three dimensional refractive index

field. To compute a viewing ray’s radiance, we require a proper formulation. A very

common approach is to use avolume rendering equation, which describes how the radi-

ance of a light ray changes as it travels through a volume of data.

Virtually all volume rendering algorithms try to find a good approximation for the

low albedo volume rendering integral presented by [Bli82] and [KvH84].Most of the

volume rendering algorithms approximate the following integral:

L(τ) =

∫ τ

0
Lc(t)e

−
R t

0
σ(s)dsdt, (5.1)

whereLc(t) is a radiance function including emission, scattering and reflection.σ(s)

is the opacity function. In our caseσ(s) = σa(c(s)) and represents the attenuation

function (Sect. 5.1.2). We will expand the above definition to a suitable form, which can

be easily discretized and computed on the GPU.

5.1.2 Attenuation and the background

The rendering equation uses an opacity function, as we already have seen in the previous

section. Comparing the inner integral of Eq. 5.1 and the attenuation integral, Eq. 3.4,

39

Chapter 5. Image Formation Model

(a) (b)

Figure 5.1: Glass sphere (1283 voxels) refracting the viewing rays. (a) Refraction only
(b) Refraction combined with attenuation; red and blue light components are attenuated,
producing green colored glass.

presented in Sect. 3.2.3, we can already see that they are identical. Indeed, our attenu-

ation definition corresponds completely to the opacity function presented in thevolume

rendering equation.

Hence we expand Eq. 5.1 to the following form

L(c) =

∫

c
Lc(~x,~v)α(t, c)dt, (5.2)

whereL(c) denotes the resulting radiance due to the whole optical path length of the

ray c. The position in space~x and the local light direction~v are defined as~x = c(t) and

~v = dc
dt . The local light directions are precomputed previously in the light simulation

step as described in Sect. 4.2.3.

Equation 5.2 does not handle the scene background. Thus the proper rendering of

a volumetric object in an environment is not possible. We therefore add abackground

termLbg to the final equation, implicitly assuming the background is at infinite distance.

We also have to apply the attenuation factor to the background term for correct approxi-

mation1.

L(c) =

∫

c
Lc(~x,~v)α(t, c)dt + Lbgα(t∞, c) (5.3)

Defining the background at infinite distance has some disadvantages for rendering

nearby geometry seen through the refractive object. This is a current restriction, but our

algorithm could easily be extended to support non-volumetric objects at finitedistances

around the scene volume. A possible implementation of such an approach is described

1imagine the background as the last, infinitesimally thin layer in the volumetric data.

40

Chapter 5. Image Formation Model

by Wyman [Wym05b]. A simple implementation of nearby geometry was used to create

ground truth comparisons to a ray tracer (Chapter 7).

5.1.3 Reflection, Scattering and Emission

In the previous section we have presented an equation for our image formation. As

already shown in the general volume rendering equation, Eq. 5.1, the termLc is used to

compute contributions of emission, scattering and reflection to the light ray. Weexpress

Lc in terms of these variables as:

Lc(~x,~v) = ω̂Ls(~x,~v) + δ(~x)RLr(~x,~v) + Le(~x) . (5.4)

Ls denotes the radiance due to inscatter, andω̂ is the scatter strength, also known

asalbedo. Albedo is the ratio between scattered and incident radiance. Normally, the

albedo depends on the local ray direction and directional distribution of incoming radi-

ation. In our case, we set it tôω = σs

σs+σa
, whereσs is scattering andσa the absorption

coefficient.

We formulateLs in terms of the scattering phase functionp (Eq. 3.5) presented in

Sect. 3.2.4. The light contribution due to inscatter is integrated over the sphere of all

incoming light directions. It is spatially varying and depends on the local raydirection

~v and the differential irradiancedEω from the directionω.

Ls(~x,~v) =

∫

Ω
p(~x,~v, ~ω)dEω (5.5)

Similarly toLs, we define the reflected radianceLr as an integral over all directions,

Lr(~x,~v) =

∫

Ω+

fr(~x,~v, ~ω) cos θdEω, (5.6)

whereθ is the angle between the surface normaln̂ and the incident light directionω.

The surface normal can either be provided as an additional function or computed directly

from the gradient of the refractive index field,n̂ =
~▽n

|~▽n| (Sect. 3.1).

The reflected radiance term is triggered by the Dirac delta functionδ(~x) in Eq. 5.4

which serves as a boundary indicator, i.e. it integrates to one over a boundary2 and is zero

elsewhere. This way, we compute the reflection only on boundaries between different

materials. As already described in Sect. 3.2.5 the Fresnel factorR determines how much

of the reflected radiance contributes to the light ray. The transmission factor T of the

2The boundary indicator could also be computed from the refractive index gradient, since its length is
unequal0 only on the interface between different refractive indices/media (see Code Listing C).

41

Chapter 5. Image Formation Model

(a) (b)

Figure 5.2: (a)Lr becomes active on the material boundary between glass and air, and is
responsible for reflections of the environment (Fresnel reflections) (b) Additionally,Ls

andLe have become active. Scattering gives a feeling of impurities inside the glass.A
small blob in the center of the glass, emitting radiance, gives an impression of phospho-
rescence.

Fresnel equation enters into Eq. 3.4 and describes the amount of radiance transmitted

from the refracted ray to the observer. We compute the global transmissionfactorT (t)

asT (t) = T1 · T2 · ... · Tn, whereTi is the transmission factor of the Fresnel equation

(Sect. 3.2.5) for the refraction eventi.

Finally, the functionLe(~x) describes the amount of radiance emitted at the position

~x. The function can be used to model multiple scattering effects or self-emissiondue

to fluorescence or phosphorescence. It can either be defined through an implicit func-

tion or as one of the properties of the scene volume. It can not affect theglobal light

computation, though.

5.1.4 Discretization of rendering terms

Ls, Lr andLe depend only on the 3D position~x in space and the local light direc-

tion ~v. Therefore their values can be evaluated locally, given volumetric descriptions of

their distributions. This locality ofLc is important for the efficient parallelization of the

computations on the GPU.

The rendering equation in its general form, as shown in Eq. 5.4, is too complex to be

evaluated in real-time. Therefore we have to simplify it with the following assumptions:

- there are only a discrete number of light sources in the scene, and

- for each point in the scene, there are only a discrete number of incoming light rays

from each of the light sources

42

Chapter 5. Image Formation Model

These restrictions allow us to discretize Eqs. 5.5 and 5.6 into discrete sums over all

incoming light directions,

Ls(~x,~v) =
∑

j

p(~x,~v, ~lj)∆Eωj
(5.7)

and

Lr(~x,~v) =
∑

j

fr(~x,~v, ~lj) cos θ∆Eωj
(5.8)

With the help of the algorithm’s numerical approximations presented in the previous

chapter, we are able to evaluate the above equations and thus Eq. 5.4 with nothing more

than the available local values. This leads to an efficient GPU implementation.

Discretization of attenuation factor α(t, c)

The attenuation factorα′(i, c) stands for a discrete version ofα(t, c), as shown in

Sect. 3.2.3, and is defined analogous as

α′(t, c) = L0 · e
−Pt

k=0
σa(c(k))∆s.

The equation can be rewritten as

α′(t, c) = L0 · e
−α̂i , (5.9)

whereα̂ is defined iteratively as

α̂i+1 = α̂i + σa(~x)∆s.

Here~x is a spatial point on the ray curvec. This way, the attenuation factor can be

updated along with the position and direction of the light ray, Eqs. 5.11 and 5.12

Having discretized the terms, we can now derive a discrete image formation model

to compute the radiance of a viewing ray propagated through the refractive object.

5.2 Discrete image formation model

We sample the light trajectory with a constant spatial step size. This is one of theprop-

erties of the ray equations derived from the eikonal equation. Due to the nature of the

equations of geometric optics, the simulation also supports ray bending and total reflec-

43

Chapter 5. Image Formation Model

tion. We would like to discretize Eq. 5.3, since this yields one general approach for the

realistic rendering of refractive objects.

In the previous section, we converted the integrals into sums by making simplify-

ing assumptions about the light sources. We have also derived discrete versions ofLs

(Eq. 5.7),Lr (Eq. 5.8) andα (Eq. 5.9). Now, we combine them intoLc and thus obtain

a discrete version of the rendering equation, Eq. 5.3, which has to be evaluated during

the rendering process for each viewing ray.

We discretize Eq. 5.3 into a discrete sum:

L(c) =
∑

c

Lc(~x,~v)α′(t, c)∆s + Lbgα
′(t∞, c), (5.10)

using the discrete versions of the attenuation functionα(t, c) andLc(~x,~v), as show in

Sect. 5.1.4.

The trajectory of the light is described by the first order differential equations, Eqs.

4.8 and 4.9, presented in Sect. 4.1.2. Using a simple Euler forward scheme wecan

discretize the equations:

~xi+1 = ~xi +
∆s

n
~wi (5.11)

~wi+1 = ~wi + ∆s~▽n. (5.12)

If necessary, also higher order integration methods could be used (e.g.the Runge-

Kutta family [PTVF92]) to discretize the equations.

The algorithm for computing the resulting radiance will therefore look as follows:

- while ray is in the volume do

- acquire all spatial data

- computeLr, Ls, Le

- α̂i+1 = α̂i + σa(~xi)∆s

- α′(t, c) = L0 · e
−α̂i

- computeLc

- Li+1(c) = Li(c) + Lc(~x,~v)α′(t, c)∆s

- compute~xi+1 and ~wi+1

- add the attenuated background termLbgα
′(t∞, c)

44

Chapter 5. Image Formation Model

This pseudo algorithm is the basis of the view renderer in the next chapter.The

view renderer evaluates the rendering equation, Eq. 5.3, for each cast viewing ray. A

more detailed description of the implementation is presented in the next chapter.

5.3 Conclusion

In this chapter, we have shown a general, physically motivated image formation model,

which allows an efficient implementation on the GPU. The computation is based on

a volumetric representation of the scene data. We have demonstrated simplifications

for the Eqs. 5.5 and 5.6 to enable an efficient implementation of the main rendering

equation.

For the realistic representation of refractive objects, we had to incorporate various

effects such as Fresnel reflection, surface BRDFs and scattering phase functions. Ex-

ample images demonstrate why the implementation of these effects is so important for

realistic image synthesis. Finally, we have combined the image formation model into

one discrete equation (Eq. 5.10).

In the next chapter we present an implementation of our algorithm. We use the

equations from the current and the previous chapter to state an efficientand powerful

implementation. The light simulation and the view rendering is performed completely

on the GPU.

45

CHAPTER 6

IMPLEMENTATION

We have already shown the underlying mathematics of our rendering approach. In this

chapter we present details, describing the implementation of the light simulator and the

view renderer. We complement this with pseudo code to simplify the understanding.

The first part of this chapter implements the theory of Chapter 4. The light simulator

computes the movement of the wavefront through the scene volume. The output data is

comprised of differential irradiance values and local light directions of the light rays for

each point in the scene.

The second part explains the inner working of the view renderer. The view renderer

implements the theory of the image formation model and the optic effects presentedin

Chapters 5 and 3. It demonstrates how the rendering equations, derived for the viewing

rays, can be implemented with little hassle. Some pseudo code, combined with a shader

implementation, shows a practical implementation of the image formation equation.

6.1 Input Data

For proper rendering of any refractive objects, we have to agree oninput data formats.

Since we evaluate the image formation equations with spatially varying functions,large

scale input data have to be provided to the algorithm.

Our volumetric sceneV is stored as a set of 3D volume textures. To render a com-

plete scene, including all input data, we require up to eight RGBA volume textures.

T1 Refractive index and gradient field

T2 Attenuation scalar field (R,G,B)

T3 Differential irradiance values (Illumination data (R,G,B))

T4 Local light direction of the wavefront

T5 Emission scalar field (R,G,B)

T6 Opaqueness indicators

T7 Reflection information (only for boundaries)

T8 Auxiliary spatially varying data (i.e. anisotropy factor, scatter strength,...)

47

Chapter 6. Implementation

The light simulator (as described in Sect. 6.2) requires textures T1 and T2 as input. It

outputs the differential irradiance values (T3) and local light directions (T4). We do not

have to recompute them as long as the properties of the light source, on which the result

depends (i.e. relative light position to the scene volume) do not change. Currently the

computation by the light simulator is done within a few seconds1 depending on sampling

rate and complexity of the scene.

In texture T1, we store a spatially varying refractive index field and the correspond-

ing gradients. The refractive indices are pre-smoothed before the gradients are com-

puted, as already described in Sect. 3.1. To render a dispersion effect (see Sect. 3.2.7),

we can either use a multi-pass approach or an array of refractive indextextures. This

poses an advantage for simulation speed but requires considerably morevideo memory.

The spatially varying attenuation data texture T2 stores the color-specific attenuation

factorσa for each voxel. Thus, the radiance of the light ray is attenuated continuously

along its path through the scene volume. Emission data T5 contributes to the light ray

by an additive radianceLe(~x) to each of the RGB channels.

The generality of our algorithm allows us to render opaque objects, by using the

opaque indicators T6 as input, which trigger opaque behavior through theδ(~x) operator;

used in Eq. 5.4. The coefficient has no direct correspondence in the image formation

model, as it is only a technical implementation issue, providing us with the possibility

to stop the viewing ray propagation through the scene based on specific conditions. The

color of the corresponding ray is thus computed by the Fresnel reflectionon a surface

and the opaque color of the boundary point. One use for the opaque termis to render

opaque objects inside a refractive material (e.g. amber with a trapped insect inside).

The reflection texture T7 is used to define special material properties for the re-

flection on a boundary. Combined with a proper boundary indicator it can beused to

simulate a BRDF and thus to compute theLr(~x,~v) term. The boundary indicator is a

discrete version of Dirac’s deltaδ(~x). We compute it by voxelizing the mesh or use the

gradient strength of the refractive index gradients.

Finally the auxiliary data T8 contains supplementary, spatially varying information

(e.g. scattering strengtĥω as in Eq. 3.5, anisotropy factorg from Eq. 5.4). For scattering

simulation, we are using the Henyey-Greenstein phase function as described in Sect.

3.2.4.

We are using 16 bit floating point 3D volume textures to store scene informations. To

render a refractive object of1283 voxels, we require up to8·1283·4·2 = 134MB of video

memory for an object if all eight input textures are used. This amount of memory can be

1currently about 8-12 seconds per frame (see Chapter 7)

48

Chapter 6. Implementation

reduced for particular objects when some data is not required for proper rendering. For

example, a glass object does not require any opaque information. Possible optimizations

for memory storage (e.g. octree textures [BD02]) can be used, but pose a disadvantage

for rendering speed.

The volume data is generated either by an implicit function or created by voxelizing

a mesh (see e.g. the Stanford bunny example). The advantage of using a mesh to create

volumetric data is that we can use it asproxy geometry(see Sect. 6.3.1). This reduces

the number of viewing rays that need to be propagated through the scene volume.

6.2 Light Simulator

In Chapter 4 we described the theory behind wavefront propagation. The light simulator,

presented in [IZT+07] and utilized for our approach, uses this wavefront theory to sim-

ulate adaptive wavefront propagation. The background of the implementation can also

be found in Chapter 4, section 4.2.2.

A light simulator run can be subdivided into the following steps2:

- Initialization

- Wavefront propagation

- update wavefront patches

- wavefront voxelization

- tessellation/undersampling analysis

- Write output

All computations required during the propagation step are performed on theGPU.

To do this, the light simulator implements aparticle systemcompletely on the graphics

processor. The difference to a standard particle system is that the particles are packed

into a group of four neighboring particles, each representing one corner of a wavefront

patch. The light simulator works on a list of patches. All the properties of thepatch

particles (position, direction and irradiance) are stored in dynamically growing textures.

6.2.1 Initialization

As already mentioned, the wavefront is subdivided into wavefront patches each contain-

ing four neighboring particles. The shape of the initialized wavefront depends on the

2similar definition can be found in Sect. 4.2.3

49

Chapter 6. Implementation

light source properties. Directional light produces a planar wavefront,where all corre-

sponding light rays are parallel. A point light source, however, has a spherical wavefront.

To overcome singularity problems, a small valueε for the initial radius is used.

The initial differential irradiance (see Sect. 4.2.4) for each wavefrontpatch is com-

puted through the irradiance of the light source. For a directional light source, the patch’s

initial irradiances are equal. However, for a point light source, the irradiance per patch

is based on the intensity law, Eq. 4.16. By assuming the patches are at a certain distance

ε away from the light source we avoid a division by zero area.

6.2.2 Wavefront patch propagation

The wavefront is implicitly propagated through its defining patches. The propagation of

the wavefront corners is done using Eqs. 4.12 and 4.13 described in theSect. 4.2.3. We

apply the discrete version

~xi+1 = ~xi +
∆t

n2
~w (6.1)

and

~wi+1 = ~wi +
∆t

n
~▽n (6.2)

of Eq. 4.12 and Eq. 4.13 to each corner particle of a wavefront patch.

During the update step, the light simulator also re-computes the differential irradi-

ance carried by each patch. It is computed by Eq. 4.16, presented in Sect. 4.2.4, and

depends on the surface area spanned by the corners of the wavefront patch. Because the

light simulator is working on a patch list, all the required computations can be performed

locally. This enables an optimal implementation on the GPU.

6.2.3 Voxelization of wavefront patches

During the propagation of the wavefront patches, the light simulator protocols their con-

tribution into the 3D volume, i.e. it stores the differential irradiance values andthe local

light directions inside a voxel.

Unfortunately, current graphics hardware does not support rendering into 3D vol-

umes (textures). Therefore another voxelization approach is required, i.e. point prim-

itives and the concept ofFlat 3D texturesintroduced by Harris et al. [HBSL03]. Flat

3D textures are also calledatlas textures. They map texture slices, cut along the z-

direction, into a 2D texture. To access any voxel stored in a flat volume texture, a map-

50

Chapter 6. Implementation

pingf : T 3 7→ T 2 is applied to the original, three dimensional texel coordinates or vice

versa for writing to a Flat 3D texture.

Point primitives are used to perform the voxelization process. The light simulator

sends as many point primitives as there are rays to the graphics pipeline. Each point

represents the center of one wavefront patch and thus is equivalent tothe light ray rep-

resented by the propagation direction of a wavefront patch. The results, irradiance value

and light direction, are then rendered into the output textures.

Through statistical analysis of the scenes we found, that it is sufficient toonly store

the highest energy which passes through a voxel. We thus limit our computations to

one contribution per voxel. Possible future implementations could store more than one

light’s contribution into a voxel with multiple simulation passes, yielding a more accu-

rate computation of the current image formation model.

6.2.4 Patch list analysis

After each update step the patch list is analyzed. This analysis is required toprevent

undersampling, as outlined in Sect. 4.2.3, and to remove patches which will notvisually

contribute to the computed results.

Undersampling is prevented by performing adivergence tessellationwhen a wave-

front patch becomes larger than a voxel. To tessellate a patch, it is dividedinto four

smaller ones (see Fig. 4.3). The new patches are then added to the current patch list to

advance the simulation.

Some patches do not visually contribute to the results anymore. Thus they areelim-

inated using anenergy threshold. Termination usually happens after loss of energy due

to attenuation or when a patch has been tessellated too many times. Patches whichleave

the volume of interest are terminated, since we assume that they can not re-enter the

volume.

As mentioned in [BW99], the physical model of ray optics breaks down at wave-

front singularities, resulting in an infinite energy result at catastrophic points. Such sin-

gularities can produce non-physical caustics. They are detected by examining the patch

orientation with respect to its propagation direction. In case, the orientation changes, the

corresponding patch is eliminated. Another postulation of the wavefront propagation

problem may help, in future work, to prevent these singularities.

The termination repeats until no patches remain. Figure 6.1 shows a wavefront prop-

agating through a wine glass. The irradiance values, computed during the update step,

are visualized as colors previewing the beautiful caustics in and around the object.

During patch list termination or tessellation, a data compaction or expansion on the

51

Chapter 6. Implementation

(a) (b)

Figure 6.1: (a) The refractive index volume of the glass is approached by a spherical
wavefront from the right. The adaptive tessellation of the wavefront is also visible. (b)
When it passes through the object, beautiful caustic patterns appear in its irradiance
distribution.

GPU is performed. This is a non-trivial task, since a GPU is not designed tohandle lists3.

To solve this problem on Shader Model 3.0 hardware, the data compaction algorithm

presented by Ziegler [ZTTS06] is utilized. It works on a mipmap-like datastructure

to construct a list of retained data entries (in our case: patches) without involving the

CPU. An extension of the algorithm is used to handle data expansion (in our case, patch

tessellation) [IZT+07].

6.3 View renderer

Our view renderer implementation follows the rules defined in the image formation sec-

tion in the previous chapter. Having the output of the light simulator available wecan

render arbitrary views of the scene including complex refractive objects. The view ren-

derer uses the equations derived in Sect. 4.1.2 to propagate viewing raysthrough the

scene volume.

We are using a fastvolume raycastingapproach based on Eqs. 4.8 and 4.9, and

their discrete versions, Eqs. 5.11 and 5.12. As already mentioned, the equations sup-

port advanced refractive effects, e.g. total reflection, ray bending, without performing

explicit ray-surface intersections. The radiance of the viewing ray is computed using the

discretized image formation model, Sect. 5.2.

Volume raycasting is an image-based volume rendering technique. The main goal

is to render 2D images from 3D data sets. Volume raycasting produces results of very

high quality. Combined with the derived rendering equation it is fast enoughto render

refractive objects in real-time. The basic algorithm for volume raycasting asused in our

approach, has the following steps:

3GPUs with Shader Model 4.0 and above can perform list handling using geometry shaders, but would
require a considerable, non-backward-compatible redesign of our implementation.

52

Chapter 6. Implementation

Figure 6.2: Basic volume ray casting of a refractive object. For each pixel of the image
plane, a viewing ray is propagated through the volume. The samples are interpolated
and composed to produce the resulting pixel value.

- Ray casting: For each pixel in the resulting image, a viewing ray is cast through

the volume data. It is common to use a bounding geometry for the volume to

define if and where viewing rays are issued.

- Sampling: The volume data is sampled on equidistant sampling points along the

viewing ray trajectory. Since the volume is not aligned with the light trajectory,

samples have to be interpolated (i.e. by trilinear interpolation4 of the surrounding

voxels) to acquire correct, approximated values for samples lying inbetween.

- Local computation: The samples are used to compute all local data based on the

rendering equation.

- Compositing: All the samples are composed into a resulting pixel color. The

composition is derived directly from the rendering equation.

In our case the last three steps are looped while the viewing ray remains in the

volume.

6.3.1 Ray casting

For each pixel of the final image, we cast viewing rays through the scenevolume. This

is done by using a bounding geometry, akaproxy geometry. In the simplest case, it is a

cube.

4for 3D textures interpolation is performed in hardware, for flat 3D textures (2D atlas texture) we per-
form the interpolation in software

53

Chapter 6. Implementation

(a) (b)

Figure 6.3: Refractive object and its proxy geometry. (a) Cube/Box as abounding prim-
itive. (b) Use of a sphere mesh as bounding primitive.

To optimize rendering, we are using a mesh as a proxy geometry for particular ob-

jects (e.g. the sphere). It follows that only the viewing rays, which are propagated

through the inner of the surrounded medium, contribute to the rendering results. As

can be seen in Fig. 6.3, there is a lot of free space around the sphere which does not

contribute to the results at all.

Our view render is able to provide a free view of the refractive object. The rendered

object can be seamlessly included into a mesh-based environment. Using a proxy ge-

ometry, we apply an object matrixM describing the rotation, translation and uniform

scaling of the refractive object. Based on proper matrix manipulation we canperform

a coordinate space ”switching” for viewing rays propagated through thescene volume,

i.e. we transform the current sampling position into the local object space ofthe scene

volume. This is done by multiplying the ray position~x with the inverse object matrix

M−1. The computed point~x′ = M−1 · ~x is then used to sample the volume data.

We are using Shader Model 3.0 hardware to render the refractive objects. A

fragment shader is then applied to the proxy geometry, which implements the

pseudo code for evaluating the image formation presented in Sect. 5.2. Tak-

ing into account correct transformation of the gradient and position vectors, the

pseudo shader code to render the refractive objects in real-time looks likethis:

54

Chapter 6. Implementation

~x0 = fragment position in world space

~w0 = normalize(~x0 − eyePosition)

while in volume do

~x′ = M−1 · ~xi

sample volume data at~x′

~▽n′ = (M−1)T · ~▽n

computeLc, α′

Li+1(c) = Li(c) + Lc(~x,~v)α′(t, c)

~xi+1 = ~xi + ∆s
n ~wi

~wi+1 = ~wi + ∆s~▽n′

i = i + 1

Li+1(c) = Li(c) + Lbgα
′(t∞, c)Tfresnel

After the shader has finished volume traversal we use the viewing ray direction to

sample the background termLbg. The sampling is performed with a simple lookup into

a dynamic environment map. The term is multiplied with the combined transmission

termTfresnel of the fresnel equations and the attenuation factor. The transmission term

is needed since only a part of the initial light energy is completely propagatedthrough

the volume. This is due to Fresnel reflections on the boundaries as described in Sect.

3.2.5 and 5.1.3.

The algorithm presented in the previous chapters and the powerful image formation

model, combined with the view renderer implementation, can handle arbitrary BRDF

models. However for simple glass objects, which are close to being perfectreflectors, a

good approximation of the first reflection is visually sufficient. Therefore, we use simple

environment lookups to simulate reflections on the object boundaries. The reflected rays

are not cast back through the volume.

6.4 Conclusion

This chapter presented a sketch of our implementation. Fig. 6.4 illustrates the workflow

of our rendering approach. In the first section, we have shown the input data, which

consists of three dimensional volume textures storing all the information we need for a

proper light simulation and rendering process.

55

Chapter 6. Implementation

Input Data Renderer

View
Renderer

Output view

Light
Simulator

User

viewpointlight position

Set of
3D textures

light position

Figure 6.4: Work-flow of our rendering system.

In the second section, we presented the light simulator. The wavefront patch list in

the simulator is administrated completely on the GPU without utilizing the geometry

shaders, allowing the use of Shader Model 3.0 hardware. The simulation time, required

to propagate the wavefront through a scene, depends on the volume resolution and re-

fractive object complexity.

In the last section we have presented a pseudo implementation of our view renderer.

The renderer casts viewing rays (rays of sight) through the scene volume and approxi-

mately evaluates the image formation model, Eq. 5.3.

All the color computations in the view renderer are performed in high dynamic range,

i.e. there is no clamping performed and floating point is used. The results arethen

mapped to the presentable display range by a tone-mapping approach as in [KMS05].

The results and the statistics about the rendering speed are presented in the next chapter.

A full shader code implementation of the pseudo code rendering algorithm is included

in Appendix C.

56

CHAPTER 7

RESULTS

The previous chapters described the complete rendering pipeline for ouralgorithm. We

have shown how to simulate different optical effects and presented a general and efficient

image formation model, Sect. 5, for the realistic rendering of refractive objects using a

volumetric object representation.

In this chapter, we present results achievable by our approach. Depending on the

scene complexity and the count of rendered refractive objects, we obtain suitable ren-

dering performance, i.e. at least at interactive frame rates of about 20-25 FPS.

Unfortunately, we are not always capable of providing a comparison withground

truth results. Currently, we are not handling nearby geometry correctly,producing re-

fraction artifacts for geometry close to the refractive object. In the future, these cases

could be handled by combining any suitable approach which enables us to compute a

correct environment look-up with respect to near-by geometry. For thepurpose of pro-

viding comparison results to ground truth, we replaced the environment map lookup by

a ray-plane intersection in the fragment shader (see Fig. 7.1). More complex nearby ge-

ometry can be rendered accurately using the approach of Hu and Qin [HQ07]. Note that

due to the volumetric discretization and refractive index field smoothing prior togradi-

ent computation, we are not able to produce results exactly matching a non-volumetric

rendering approach.

Our renderer is capable of computing Fresnel effects and anisotropic scattering

phase functions on-the-fly. With the help of spatially varying, as well as color channel-

dependent attenuation, beautifully colored objects can be reproduced. Emission and

dispersion effects can be simulated by providing one separate refractive index field for

each of the color components.

To render our results, we utilized nVidia’s GeForce 8800 GTX with 768 MB of video

memory. Our scene data is stored in1283 volumes, with up to eight volumetric textures,

as mentioned in Sect. 6.1. As a CPU we are using a Dual Core AMD Opteron with

2.6 GHz. However, this is mostly irrelevant as most computational work is performed

completely on the GPU.

Rendering performance depends on the complexity of the rendered refractive ob-

jects and on the view resolution, since this affects the number of rays being cast from the

viewpoint through the scene volume. We obtain a suitable real-time performance of 25

frames per second for almost all of our objects rendered at 800x600 resolution. For the

57

Chapter 7. Results

(a) (b)

Figure 7.1: Comparison between a ray-traced image rendered with the Persistence of
Vision raytracer (POV-Ray) (a) and our algorithm (b). The differences in the refraction
and shadow size as well as the slightly displaced caustic pattern are due to smoothing of
the refractive index field.

light simulation step, which is required for each relative movement between light source

and refractive object, the algorithm requires 8-12 seconds to re-compute the light distri-

bution inside the volume of interest. For the wine-glass scene, containing an animated

light source, we spent around 90 minutes to simulate the light distribution for around

600 frames.

7.1 Objects

For the rendered result sequences we are using up to five different refractive objects

in several environments. The objects visualize different combinations of the optical

effects that were presented in the previous chapters. A museum scene contains five

different refractive objects, all of them rendered simultaneously. Figure 7.2 shows a

glass block and a wine glass presented in this environment. The environmentmaps for

the background term (see Chapter 5) are stored in a cube map texture. They are either

created on-the-fly for each of the objects (i.e. rendering from the center point of the

object), or we utilize an environment map rendered from the view point (i.e. camera

position).

The SIGGRAPH logo glass object, shown in Figure 7.2 (a), demonstrates thefaithful

reproduction of spatially varying refraction and attenuation behavior, in particular close

to the logo symbol and the text. On the boundary of the object, total reflection can be

observed.

The solid rounded cube, Fig. 7.3(a), is composed of glass layers with different char-

acteristics. The object also shows a combination of varying refractive indices and differ-

58

Chapter 7. Results

ent attenuation factors. Sparkles are visible inside the object, caused by the anisotropic

scattering in its interior. Focusing of light in the glass leads to nice volume caustics.

A simple glass sphere in Figure 7.4 (a) rendered into a captured real-worldenviron-

ment demonstrates similar effects. Additionally, it contains a slight emissive component,

which yields a fluorescent structure in the center of the sphere.

A glass filled with red wine is shown in Figure 7.4(b) and in Figure 7.2(b). In the first

case, the glass is illuminated with a directional light source that causes colored caustics

on the table. In the second case, the glass is lit from the bottom. However, one can not

see any illumination, because of the missing scattering term. Nevertheless, an appealing

reflection and complex refraction effects result in a realistic impression of the object.

An example rendering of objects inside scattering participating media can be seen in

Figure 7.3(b). The glass bunny in a showing case filled with anisotropically scattering

smoke seems to be made of amber with black embeddings. The look of the embeddings

excellently shows the spatially varying attenuation possibilities of our algorithm. The

glass bunny also anisotropically scatters light in its interior. Please note that this variety

of realistic effects is rendered in real-time, in particular the volume caustics inside and

outside the object, the glares, the caustics, shadows in the smoke, and the reflections on

the surface.

Using transparency sorting, we can render objects one after another.This way, the

rendered refractive objects can be seen through other companion pieces (e.g. Fig. 7.2

(a)). This enables a proper integration of volumetric objects into a triangle mesh envi-

ronment.

59

Chapter 7. Results

7.2 Results

All screenshots are taken from a real-time FX-demo created during this project. Video of

this demo can be downloaded athttp://www.mpi-inf.mpg.de/resources/

EikonalRendering/

(a) (b)

Figure 7.2: (a) Glass block with embedded SIGGRAPH logo made up of varying refrac-
tion and attenuation materials, 14.7 FPS, (5 objects in scene). Note the surface reflec-
tions and the total reflections within, as well as the rounded cube being visiblethrough
the glass block. (b) Complex refraction patterns in the glass, 10.3 FPS, (5 objects in
scene).

(a) (b)

Figure 7.3: (a) Rounded cube composed of three differently colored and differently re-
fracting kinds of glass, showing scattering effects and caustics in its interior, 6.5 FPS.
(b) Stanford bunny [sta] with spatially varying attenuation, leading to the impression of
an amber-like bunny with black embeddings. Since the object is illuminated from under-
neath, colored volume caustics and shadows are visible in the anisotropicallyscattering
smoke and glass, 13 FPS. – Note that there are 5 objects rendered simultaneously.

60

Chapter 7. Results

(a) (b)

Figure 7.4: (a) Colored sphere rendered into an HDR environment map, showing slight
emission in addition to all other effects, at 26.2 FPS. (c) A screenshot of awine glass
scene. The time to compute the light distribution was around 7 seconds. The time
required to render the object is around 0.04 seconds/25 FPS.

(a) (b)

Figure 7.5: (a) Scene showing up to 9 objects simultaneously. The big sphere in the mid-
dle has a resolution of1283 voxels, while the small spheres surrounding it are composed
of only 323 voxels. The rendering speed in this scene varies between 9 FPS (when the
big sphere fills out the complete viewport) and 60 FPS (whenever only the small spheres
are visible). Frame rate of the screenshot is 15.2 FPS. (b) A screenshotfrom the mu-
seum scene, showing all refractive objects simultaneously . The objects exhibit various
optical effects. Their resolution is1283 voxels, with up to 6 volume data textures for
each object. The rendering speed is 10.8 FPS.

61

CHAPTER 8

CONCLUSIONS& FUTURE WORK

In this thesis we have presented a powerful algorithm for the realistic rendering of re-

fractive objects. The algorithm is based on a continuous, volumetric representation of

object data. We have used the eikonal equation, the main postulate of geometric optics,

to derive a physically motivated ray equation.

We divided our approach into two stages. In the first stage, we compute theirra-

diance distribution in the scene volume using a light simulator. The simulator utilizes

the derived ray equations to propagate a light wavefront, originating at alight source,

through the scene. Using the intensity law of geometric optics and absorption properties

of the object, we are able to compute the irradiance distribution in the scene. The com-

putation time depends on the complexity and resolution of the given volumetric data,

and is not yet a real-time operation. However an efficient implementation on theGPU

provides us with update times of typically as 10 seconds. For static scenes, where the

light source does not change relatively to the lit, refractive object, we are only required to

computed the irradiance data once, giving the possibility to implement very impressive

results in real-time.

We are currently supporting a directional and a point light source. However more

complex light sources can be implemented within our approach. This either requires a

suitable, single wavefront representation or multiple wavefronts can be used (i.e. multi-

directional light source). A propagation of multiple wavefronts is performedvia multi-

pass simulation.

The data computed by the light simulator is used in the view renderer to efficiently

combine the results into a beautiful scene rendering. Our view renderer evaluates a

slightly changed volumetric rendering equation to compute the radiance of viewing rays

that are cast through the volumetric scene data. A powerful, physically motivated image

formation model enables us to render complex volumetric objects with arbitrarily vary-

ing refractive index, surface effects with arbitrary BRDFs, and view-dependent single-

scattering effects. More advanced effects, described in this thesis, are obtained at very

small additional cost. Furthermore, our view renderer is capable of rendering volume

caustics and realisticly rendering the appearance of transparent objects in a scattering

participating medium, such as smoke.

Due to the physical nature of the used equations, our method enables us to evaluate

complex light paths, both from the object towards the viewer and from the light source

63

Chapter 8. Conclusions & Future Work

towards the object, conveniently using the same mathematical framework.

Future work, based on this approach, will focus on increasing the rendering per-

formance through optimization of the consumed data storage in the view renderer.

This could be performed by using data-organization structures like octrees or other ap-

proaches, helping us to decrease the required video memory. Possible implementations

of non-constant step sizes during ray casting, based on distance transforms, could also

contribute to increase the rendering performance. Furthermore we wouldlike to study

state-of-the-art methods for rendering of nearby geometry. This wouldimprove the at-

tractiveness of volumetric representations for complex refractive objects, enabling their

seamless integration into a standard mesh-based environment. A proper combination of

opacity and reflection terms together with knowledge of a geometry outside of the refrac-

tive object, would allow the combination of volumetric objects with mesh-based scenery.

Finally, an extension to optical anisotropic materials (e.g. crystals) would increase the

generality of our approach, see Appendix A for a theoretical discussion.

We would like to finish this thesis with the same words that it began with: ”In the

beginning ... there was light”. The computer graphics research evolves ata rapid pace.

The border between reality and a virtual environment starts to vanish. In this work we

have tried to get a step closer to this goal. Future works will only improve the quality and

performance of recreating the real world in virtual environments. However, we should

never forget how to distinguish the two, since one is the world we live in.

64

APPENDIX A

ANISOTROPIC MATERIALS

In this chapter we present a method of propagating light rays through an optically

anisotropic material. In contrast to opticallyisotropic materials the properties of such

materials depend on the direction of light propagation. The equations derived in previous

chapters, do not hold anymore. Nevertheless, some additional changesin our framework

enable a physically motived rendering of even these materials.

The theory of anisotropic materials is very complex (see Born and Wolf [BW99]).

We do not handle its backgrounds, but will try to present simple definitions and provide

a way on how to include them into our framework.

Possible examples of anisotropic materials can be found in crystals. A crystal is a

solid in which the atoms, molecules or irons are packed into a regular structure1, i.e.

a repeating patterns of the structure in all three spatial dimensions. The specific field

of optics handling anisotropic materials is also calledoptics of crystalsor just crystal

optics.

The consequences of the optical anisotropic structure of a medium is a couple of

effects (e.g. birefringence, trirefringence, polarization effects andconical refraction)

which can not properly be handled by an isotropic object representation.

Because of the complexity of light behavior inside anisotropic materials, thereis only

a small amount of computer graphics research in this area. Wolff and Kurlander [WK90]

were the first attempting to include polarization effects in ray tracing. Tannenbaum et al.

[TTW94] show some details on the implementation of the birefringence phenomenon.

Wilkie et al. [WTP01] present a way of including polarization into rendering, however

they do not handle refractive objects at all. Sun et al.[SFD00] presenta simple way

of rendering diamonds, but do not handle complex effects like birefringence. Guy and

Soler [GS04] show an interactive implementation of gemstone rendering with very im-

pressive results. They handle the double refraction phenomenon as well as the dispersion

effect including total (internal) reflections inside of gemstones. Due to the complexity

of ray propagation computations inside an anisotropic medium they apply a suitable ap-

proximation, with a minimal difference to correct simulation.

1some crystals, e.g. liquid crystals, adopt anisotropy temporarily through external forces, e.g. an electric
field

65

Appendix A. Anisotropic materials

Figure A.1: A birefringence crystal (calcite) showing the double refraction of the light.

A.1 Birefringence

Birefringence, also calleddouble refraction, appears inuniaxial2 anisotropic refractive

objects, e.g. crystals. A circular or elliptical polarized light ray entering such a material

separates into two sub-rays: theordinary ray (o-ray) and theextraordinary ray(e-ray).

The rays become linearly polarized in orthogonal directions, i.e. their polarization vec-

tors are orthogonal (Fig. A.2) (the effect oftrirefringenceappears in opticallybiaxial

materials and is not handled in this work).

The magnitude of birefringence is defined as

∆n = ne − no,

whereno and ne are the refractive indices for polarizations perpendicular (ordinary)

and parallel (extraordinary) to the axis of anisotropy. Therefore the refractive indices

correspond to both rays, created during the entering event, respectively. If ∆n < 0, then

the material isnegativelyuniaxial (e.g. feldspar), if∆n > 0, then it ispositivelyuniaxial

(e.g. quartz). If∆n = 0, then the material is optically isotropic (e.g. glass).

Ordinary rays lie in the plane of incidence and obey Snell’s law. They behave, as

if they were traveling through an isotropic material [BW99]. This enables usto apply

the previous ray propagation equations (4.8 and 4.9), to propagateo-rays through the

refracted object. Thus we can apply the same strategy as for isotropic materials for the

refractive index field of ano-ray, yielding an inhomogeneous anisotropic material with

respect to theo-rays.e-rays, however, require a special treatment.

2one optical axis; the definition of optical axis can be found in [BW99].

66

Appendix A. Anisotropic materials

Figure A.2: Formation of an ordinary and extraordinary ray when an incident ray en-
counters an anisotropic medium [GS04].

A.2 e-Ray propagation in uniaxial crystals

First we define~a as theoptical axis. ~a is the direction in which each of the sub-rays

experience the same refractive index (Fig. A.2). It can correlate with thesymmetry axis

of the crystal. It comprises one of the properties of an anisotropic medium. An o-ray

is perpendicularly polarized with respect to the optical axis, ane-ray, however, parallel.

We further defineθ as the angle between the optical axis~a and the wave propagation

direction~s (i.e. cos θ = ~a·~s
|~a|·|~s|).

While the energy propagation direction for an ordinary ray is parallel to its wave

direction, for an extraordinary ray this is not the case. The propagationdirection of ane-

ray is not parallel to the wave normal direction. Fig. A.3 illustrates the correspondences

between wave propagation direction~▽Se = ne(θ)~se and the energy or ray propagation

direction~te, which is relevant for our purpose. However, as shown in [BW99], the wave

directions of both rays still obey the laws of refraction (also known as Snell’s law). Thus,

to propagate ane−ray through an inhomogeneous, anisotropic medium, we have to find

a mappingf(~se) = ~te to be able to compute the ray vector from the wave vector.

Born and Wolf proposed a formula to bring vector~te into a relation with~se:

~tk =
~sk

vpvr

(

v2
p +

v2
p(v

2
r − v2

p)

v2
p − v2

k

)

, (k = x, y, z), (A.1)

wherevp is thephase velocity(in the direction of~s) and is defined asvp = c
n , vr is

67

Appendix A. Anisotropic materials

Figure A.3: The electric field of ane-ray is not perpendicular to the wave propagation
direction. The consequence is that the energy propagation and wave propagation vectors
are not parallel, i.e.~te ∦ ~se. (Note that this figure has no directly verifiable physical
significance.)

the velocity of energy transport orray velocitywith vr = vr~t · ~s andvk is a principal

velocity of propagation3 and is defined asvk = c√
µεk

for everyk = (x, y, z). The

principal velocities are constant and can be pre-computed based on thedielectric tensor

ε and thepermeability constantµ4. Both values are properties of the refractive medium

and can vary spatially to simulate an inhomogeneous, anisotropic substance (e.g. liquid

crystal).

We can see in Eq. A.1 that the denominatorv2
p − v2

k may vanish. This corresponds

to so calledconical refraction, where a particular wave directions~s corresponds to an

infinite number of ray directions~t. We will not take care of this effect, since the required

handling for this special case can not easily be implemented on the GPU.

Typically, there are two possible solutions for the phase velocityvp. Born and Wolf

have shown that both velocities can be computed as following:

vo =
c

no

ve =

[

((
c

no
)2 cos2 θ + (

c

ne
)2 sin2 θ

] 1

2

.

For the special caseθ = 0, leading~s ‖ ~a, we do not get the effect of double refrac-

tion, since the both ray propagation directions~to and~te are also parallel.

3see Born and Wolf[BW99] for more details onε, µ andvk
4µ can be set to 1 to simulate a non-magnetic medium

68

Appendix A. Anisotropic materials

A.2.1 Refraction and Internal reflection of e-rays

First let us reconsider the dielectric tensorε from the previous section. The dielectric

tensor is a constant for a given material and defined as:

ε =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

.

Since the dielectric tensor is symmetric ([BW99]), we can rewrite the tensor field in

the simpler form based on proper mathematical reformulations:

ε =

ε1 0 0

0 ε2 0

0 0 ε3

.

The dielectric displacement vector~D and the electric field~E5 are related by the tensor

ε:
~D = ε ~E.

In an optically isotropic medium the values ofε are equal,ε1 = ε2 = ε3. Hence we

see that the dielectric displacement vector and the electric field are collinear,~D · ~E =

const. The consequence is that the ray direction and the wave directions are collinear

too.

However in an uniaxial anisotropic medium, we have two non-equal constants,ε1 =

ε2 6= ε3. This leads to~D ∦ ~E, which results in a non-parallel wave normal and ray

vector (Fig. A.3), since~s ⊥ ~D and~t ⊥ ~E.

As already mentioned in the previous section, Born and Wolf proposed a mappingf

to bring both vectors in relation. Beyerle and McDermid [BM98] have shownanother

relation between them:
~t =

ε~s

| ε~s |
. (A.2)

This is also clear, because the corresponding unit vectors~s and~t experience the same

transformation as the field vectors~D and ~E.

Before we can use this relation, we must first find a suitable way to propagate the

wave normal vector~s of ane-ray in an uniaxial anisotropic medium.

Let us first define the orthonormalprincipal systemE 6 of the crystal through their

5see Maxwell’s equations [BW99]
6it is spanned by the wavepropagation vector~s and the optical axis~a

69

Appendix A. Anisotropic materials

orthonormal vectors{~e1, ~e2, ~e3}:

~e1 =
~a × ~s

| ~a × ~s |
, ~e2 =

~s × (~a × ~s)

| ~s × (~a × ~s) |
, ~e3 = ~a. (A.3)

Now we use the proposal by Beyerle and McDermid [BM98] to build a mapping

from E to a non-orthonormal coordinate systemE ′ with the help of arbitrarily orthonor-

mal basis vectors{~e′1 = (1, 0, 0)T , ~e′2 = (0, 1, 0)T , ~e′3 = (0, 0, 1)T } (e.g. world space

or volume space base vectors):

γ = O

1

ne
0 0

0
1

ne
0

0 0
1

no

OT

with

O =

~e1 · ~e′1 ~e2 · ~e′2 ~e3 · ~e′3
~e1 · ~e′1 ~e2 · ~e′2 ~e3 · ~e′3
~e1 · ~e′1 ~e2 · ~e′2 ~e3 · ~e′3

.

This mapping now allows us to transform the wave specific directions from one co-

ordinate system to another. Beyerle and McDermid have shown that this transformation

remaps theray normalsurface7 in E into a spherical shape inE ′. Thus the ray vector
~t′ ∈ E ′ corresponds now to the wave normal vector~s ∈ E .

In other words, ane-ray propagating through theE ′ space behaves as if it was in

a ”pseudo-isotropic” medium. This is based on the fact that the wave normalvector~s

obeys the refraction/reflection laws with respect to the angle dependent refractive index

n(θ). We can now define the following mappings, as made by Beyerle and McDermid,

for the wave normal vector~s and the ray propagation vector~t:

~s′ =
γ~s

| γ~s |

~t =
γ~s′

| γ~s′ |
.

As we can see in [BM98] thee-ray traveling inE ′ coordinate space obeys Snell’s

law. However, since the ray is propagated inE ′ we have to take care of the normals on

7a detailed definition of the ray normal surface is given in [BW99], pp.799

70

Appendix A. Anisotropic materials

the material boundaries. Based on the mapping operatorγ we map a surface normaln̂

into E ′ with:
~̂
n′ =

γn̂

| γn̂ |
.

Summarizing this we deduce: ane-ray propagated through an anisotropic material

in coordinate systemE ′, behaves in the same way as ano-ray that is propagated inE .

Hence we can state similar first order differential equations as in Sect. 4.1.2to propagate

ane-ray:

n′d~r
ds

= ~s′ (A.4)

d~s′

ds
= ~▽θn

′, (A.5)

wheren′ is the corresponding angle dependent refractive index and~▽θ ∈ R3 denotes

the gradient of refractive index functionn′(x, y, z, θ) ∈ R for a fixedθ. For an inhomo-

geneous, anisotropic material we define the refractive index ”experienced” by ane-ray

asn′ = n′
e(x, y, z, θ) = n′

eθ(x, y, z).

Based on these definitions we can now simulate light propagation of an extraordinary

ray in inhomogeneous uniaxial anisotropic medium in an elegant way. The gradient

function is computed in the same way as shown in Sect. 3.1 and stored as a 4D-lookup

texture8.

A.3 Absorption/Attenuation

As we have already mentioned in Sect. 3.2.3, the energy of a light ray can beattenuated

while traveling through a medium. We have defined an attenuation factorα based on the

intensity law. For anisotropic materials, Born and Wolf [BW99] proposed twoformulas

to compute the absorbance of the ordinary and extraordinary rays. We use both of them

to define the attenuation functionα, as in Sect. 3.2.3,

αo(t, c) = L0 · e
−

R t

0
σo

a(c(s))ds

αe(t, c) = L0 · e
−

R t

0

“

σo
a(c(s)) cos2 θ+σe

a(c(s))(no
ne

)2 sin2 θ
”

ds
,

of an o-ray ande-ray, respectively.σo and σe are characteristical, spatially varying

material constants, andθ is the angle between~se and~a, as mentioned previously.

Since the absorbance of ane-ray depends on its direction, the color will be differ-

8the values can also be pre-smoothed by a four dimensional smoothing operator

71

Appendix A. Anisotropic materials

ent. This phenomenon is known aspleochroism. These approximations of attenuation

for each of the refracted rays, enables us to compute the radiance of theviewing rays

traveling through an anisotropic medium.

Conclusion

In this chapter we presented a way of propagating light through an opticallyanisotropic

medium. We specified the propagation only for uniaxial (one optical axis) media. Since

the propagation of an ordinary ray follows the same rule of refraction as inisotropic

media, we can use the equations for isotropic materials as presented in the Chapter 4.

However, an extraordinary ray behaves differently. Based on a coordinate space trans-

formation we were able to tackle the problem ofe-ray propagation. We have shown

that we can simulate thee-ray trajectory inside an inhomogeneous, optically anisotropic

material with the same equations as for isotropic objects.

We have presented the computation of attenuation functions for both rays. The ab-

sorbance for thee-ray depends on its polarization, which gives rise to the phenomenon

of pleochroism.

The computations for ray propagation inside an anisotropic materials are quitecom-

plex. In future work, we would like to optimize the propagation ofe-rays, and study the

practical realization of the theory presented here. We would also like to extend our algo-

rithm to simulate biaxial media and thus cover the complete set of optically anisotropic,

inhomogeneous refractive objects.

72

APPENDIX B

FORMULAE

Chapter3

• Gradient computation, Eq. 3.1

~▽f(x, y, z) = (
f(x + 1, y, z) − f(x − 1, y, z)

2
,

f(x, y + 1, z) − f(x, y − 1, z)

2
,

f(x, y, z + 1) − f(x, y, z − 1)

2
)

and three dimensional gauss smoothing operator, Eq. 3.2

g(x, y, z) = e−((x−xo
σ

)2+(y−yo
σ

)2+(z−zo
σ

)2).

used in the Sect. 3.1 to present the computation of the gradient field~▽n from the

refractive index field.

• Using the absorption law, we derived the attenuation factorα(t, c) to simulate

spatially varying attenuation for a light ray traveling through the scene volume,

Eq. 3.4

α(t, c) = L0 · e
−

R t

0
σt(c(s))ds

is presented in the Sect. 3.2.3.

• Henyey and Greenstein approximation of single anisotropic scattering function.

p =
1 − g2

2(1 − 2g cos θ + g2)3/2
,

Eq. 3.5 is shown in Sect. 3.2.4 and allows us to render spatially varying

anisotropic scattering effects.

• Eq. 3.6

R =
ni cos θi + nt cos θt

ni cos θi − nt cos θt

and the relationT = 1−R are used to compute the surface reflection factor based

on the Fresnel equation. The factor is used to approximate correct light behavior

during reflection at material boundaries.

73

Appendix B. Formulae

Chapter4

• The eikonal equation, Eq. 4.2

| ~▽S |= n,

shown in the Sect. 4.1.2, corresponds to the geometric description of the propaga-

tion of a massless particle (i.e. photon) through inhomogeneous refractiveindex

fields. We use this equation to solve the volumetric rendering problem by propa-

gating a light ray along the solutions of the eikonal equation.

• The ray equation of geometric optics, Eq. 4.7

d

ds
(n

d~r

ds
) = ~▽n

derived in the Sect. 4.1.2 from the eikonal equation describes the trajectory of a

light ray within a field of inhomogeneous refractive index values. This is themain

equation used in the view renderer which casts the viewing rays through thescene

volume.

• The re-parameterized ray equation, Eq. 4.14

n
d

dt
(n2 d~r

dt
) = ~▽n

describes the propagation of wavefront particles, with four of them spanning a

wavefront patch. The equation uses a parameterization with constant temporal

step sizes, enabling a simple implementation of a light simulator on the GPU.

• A discrete version of the intensity law (Eq. 4.16), presented in the Sect. 4.2.4

∆Eω(t) =
∆Eω(0)A(0)

A(t)

defines the way of computing the differential irradiance values for each of the

wavefront patches. The computed patch energy is required to performcorrect

simulation of anisotropic scattering and reflection effects.

74

Appendix B. Formulae

Chapter5

• A slightly changed volumetric rendering equation

L(c) =

∫

c
Lc(~x,~v)α(t, c)dt + Lbgα(t∞, c)

presented in the Sect. 5.1.2 is the main postulate of our image formation model.

We solve the discrete approximation of this equation while propagating a viewing

ray through the scene volume.

• TheLc term of the rendering equation is defined as

Lc(~x,~v) = ω̂Ls(~x,~v) + δ(~x)RLr(~x,~v) + Le(~x,~v)

and combines all the subterms needed for the realistic rendering within our image

formation model. The equation is presented in the Sect. 5.1.3.

• Making simplifying assumptions about the light source contribution to the render-

ing results we could derive a discrete equation for the termsLs andLr as

Ls(~x,~v) =
∑

j

p(~x,~v, ~lj)∆Eωj
,

which describes spatially varying scattering, and

Lr(~x,~v) =
∑

j

fr(~x,~v, ~lj) cos θ∆Eωj
,

defining the reflected radiance on a surface boundary, triggered by the Dirac delta

functionδ(~x). The termLe describes the amount of emitted energy. The equations

are defined in Sect. 5.1.4.

75

APPENDIX C

CODE L ISTING
Below we are presenting the shader code, which is used in the view renderer to cast
the viewing rays through the scene volume. The code is written in the nVidia’s Cfor
Graphics (Cg) language. It is supported by the Shader Model 3.0 hardware.

/ /−−
/ / V e r t e x Shader (vp20 p r o f i l e)
/ /−−
s t r u c t v e r t e x I n p u t s
{

f l o a t 4 p o s i t i o n : POSITION ;
f l o a t 3 normal : NORMAL;
f l o a t 4 c o l o r : COLOR;

} ;

s t r u c t f r a g m e n t I n p u t s
{

f l o a t 4 pos : POSITION ;

/ / P o s i t i o n o f t h e ray i n wor ld c o o r d i n a t e s
f l o a t 4 ray InWor ld : TEXCOORD1;

/ / P o s i t i o n o f t h e ray i n volume c o o r d i n a t e s
f l o a t 4 rayInVolume : TEXCOORD2;

} ;

vo id main (
i n v e r t e x I n p u t s IN ,
ou t f r a g m e n t I n p u t s OUT,

/ / Ob jec t m a t r i x
un i fo rm f l o a t 4 x 4 ob jMat r i x ,

/ / Modelview−P r o j e c t i o n m a t r i x
un i fo rm f l o a t 4 x 4 modelViewProj)

{

/ / compute c o o r d i n a t e s o f t h e ray p o s i t i o n i n volume space
OUT. rayInVolume = IN . p o s i t i o n + f l o a t 4 (0 . 5 , 0 . 5 , 0 . 5 , 0) ;

/ / p o s i t i o n o f t h e ray i n wor ld space
OUT. ray InWor ld = mul (ob jMat r i x , IN . p o s i t i o n) ;

/ / compute p o s i t i o n i n c l i p space
OUT. pos = mul (modelViewProj , IN . p o s i t i o n) ;

}

/ /−−
/ / Fragment Shader (fp40 p r o f i l e)
/ /−−
s t r u c t f r a g m e n t I n p u t s
{

f l o a t 4 pos : POSITION ;

/ / P o s i t i o n o f t h e geomet ry p o i n t i n wor ld c o o r d i n a t e s
f l o a t 4 ray InWor ld : TEXCOORD1;

/ / P o s i t i o n o f t h e ray i n volume c o o r d i n a t e s
f l o a t 4 rayInVolume : TEXCOORD2;

} ;

/ /−−

77

Appendix C. Code Listing

/ / C o n s t a n t s
/ /−−
cons t f l o a t 3 ze ro = f l o a t 3 (0 , 0 , 0) ;
cons t f l o a t 3 one = f l o a t 3 (1 , 1 , 1) ;

/ /−−
/ / Get an i n t e r p o l a t e d v o x e l f rom 2D a t l a s t e x t u r e .
/ /−−
f l o a t 4 ge tVoxe l (sampler2D a t l a s T e x , f l o a t 3 texCoord ,

f l o a t 2 s l i c e S i z e , f l o a t s l i c e C o u n t , f l o a t s l i c e P e r L i n e)
{

/ / our s l i c e number i s t h i s one
f l o a t s l i c e = s l i c e C o u n t ∗ texCoord . z + 0 . 5 ;

/ / now we have s l i c e number f o r t h e bo th n e i g h b o r s
f l o a t s l i c e 1 = f l o o r (s l i c e) ;
f l o a t s l i c e 2 = c e i l (s l i c e) ;

/ / mix f a c t o r g i v e s us t h e l e r p f a c t o r between two n e i g h b o r i ng s l i c e s
f l o a t m i x f a c t o r = f r a c (s l i c e) ;

/ / c o o r d i n a t e s o f t h e f i r s t s l i c e
f l o a t t 1 = s l i c e 1 / s l i c e P e r L i n e ;
f l o a t 2 s l i c e c o o r d 1 = f l o a t 2 (f r a c (t 1)∗ s l i c e P e r L i n e , f l o o r (t 1)) ;
f l o a t 2 coord1 = s l i c e S i z e . xy∗ (texCoord . xy + s l i c e c o o r d 1) ;

/ / c o o r d i n a t e s o f t h e second s l i c e
f l o a t t 2 = s l i c e 2 / s l i c e P e r L i n e ;
f l o a t 2 s l i c e c o o r d 2 = f l o a t 2 (f r a c (t 2)∗ s l i c e P e r L i n e , f l o o r (t 2)) ;
f l o a t 2 coord2 = s l i c e S i z e . xy∗ (texCoord . xy + s l i c e c o o r d 2) ;

/ / now g e t bo th v a l u e s
f l o a t 4 voxe l1 = tex2D (a t l a s T e x , coord1) ;
f l o a t 4 voxe l2 = tex2D (a t l a s T e x , coord2) ;

/ / now i n t e r p o l a t e between both and r e t u r n t h e r e s u l t
re turn l e r p (voxel1 , voxel2 , m i x f a c t o r) ;

}

/ /−−
/ / Render ing
/ /−−
f l o a t 4 main (

i n f r a g m e n t I n p u t s IN ,

/ / i n p u t vo lumes as 2d a t l a s t e x t u r e s
un i fo rm sampler2D volumeTex ,
un i fo rm sampler2D volumeAttTex ,
un i fo rm sampler2D volumeAuxTex ,
un i fo rm sampler2D volumeI l lumTex ,
un i fo rm sampler2D vo lumeDi rec t ionTex ,
un i fo rm sampler2D volumeEmissionTex ,
un i fo rm sampler2D volumeOpaqueDataTex ,
un i fo rm sampler2D vo lumeRef lec t ionDataTex ,
un i fo rm samplerCUBE envMap ,

/ / Camera p o s i t i o n i n wor ld c o o r d i n a t e s
un i fo rm f l o a t 3 eyePos ,

/ / De l ta S , s t e p s i z e
un i fo rm f l o a t s t e p S i z e ,

/ / Ob jec t m a t r i c i e s
un i fo rm f l o a t 4 x 4 ob jMat r i x ,
un i fo rm f l o a t 4 x 4 o b jMa t r i x I ,
un i fo rm f l o a t 4 x 4 ob jMat r i x IT ,

/ / S l i c e s i n f o r m a t i o n o f t h e a t l a s t e x t u r e
un i fo rm f l o a t 2 s l i c e S i z e ,
un i fo rm f l o a t s l i c e P e r L i n e ,
un i fo rm f l o a t s l i c e C o u n t ,
un i fo rm f l o a t 2 t e x e l S i z e ,
un i fo rm f l o a t 3 v o x e l S i z e

) : COLOR{

78

Appendix C. Code Listing

f l o a t 4 vOUT;

/ / t h i s are ray s t a r t i n g p o i n t s i n volume and i n wor ld c o o r d i na t e s
f l o a t 3 rayVolumePos = IN . rayInVolume ;
f l o a t 3 rayWor ldPos = IN . ray InWor ld ;

/ / S tep th rough t h e volume / wor ld space
f l o a t 3 r a y S t e p = s t e p S i z e∗ 2 . 0 ;
f l o a t 3 rayWor ldDi r = n o r m a l i z e (rayWor ldPos− eyePos) ;

/ / use t h i s v e c t o r s t o i t e r a t e th rough t h e volume
f l o a t 3 I c = 0 ; / / combined
f l o a t 3 I s = 0 ; / / s c a t t e r i n g
f l o a t 3 I r = 0 ; / / r e f l e c t i o n
f l o a t 3 I e = 0 ; / / e m i s s i o n
f l o a t 3 I = 0 ; / / f i n a l
f l o a t 3 A = 0 ; / / absborbance
f l o a t n = 1 . 0 ; / / r e f r a c t i o n i n d ex
boo l b I t e r a t e = t r u e ;

/ / I n i t i a l f r e s n e l r e f l e c t i o n v a l u e s
f l o a t T = 1 , R = 0 ;
boo l boundary = f a l s e ;
boo l bOpaque = f a l s e ;
f l o a t 4 voxelOpaqueData = f l o a t 4 (0 , 0 , 0 , 0) ;
s l i c e C o u n t = s l i c e C o u n t− 1 ;

/ / we i t e r a t e th rough t h e volume
whi le (b I t e r a t e && ! bOpaque)
{

/ / Sample v o x e l da ta on t h e c u r r e n t p o s i t i o n
f l o a t 4 voxe l = ge tVoxe l (volumeTex , rayVolumePos ,

s l i c e S i z e , s l i c e C o u n t , s l i c e P e r L i n e) ;
f l o a t 4 v o x e l A t t = ge tVoxe l (volumeAttTex , rayVolumePos ,

s l i c e S i z e , s l i c e C o u n t , s l i c e P e r L i n e) ;
f l o a t 4 voxelAux = ge tVoxe l (volumeAuxTex , rayVolumePos ,

s l i c e S i z e , s l i c e C o u n t , s l i c e P e r L i n e) ;
f l o a t 3 voxe lEmiss ion = ge tVoxe l (volumeEmissionTex , rayVolumePos ,

s l i c e S i z e , s l i c e C o u n t , s l i c e P e r L i n e) . rgb ;
f l o a t 4 v o x e l R e f l e c t i o n D a t a = ge tVoxe l (vo lumeRef lec t ionDataTex , rayVolumePos ,

s l i c e S i z e , s l i c e C o u n t , s l i c e P e r L i n e) ;
f l o a t 3 v o x e l L i g h t D i r = ge tVoxe l (vo lumeDi rec t ionTex , rayVolumePos , s l i c e S i z e ,

s l i c e C o u n t , s l i c e P e r L i n e) . xyz ;
f l o a t 3 v o x e l I l l u m = getVoxe l (volumeI l lumTex , rayVolumePos , s l i c e S i z e ,

s l i c e C o u n t , s l i c e P e r L i n e) . xyz ;
voxelOpaqueData = ge tVoxe l (volumeOpaqueDataTex , rayVolumePos ,

s l i c e S i z e , s l i c e C o u n t , s l i c e P e r L i n e) ;

/ / Compute a n i s o t r o p y f a c t o r
f l o a t s c a t t e r S t r e n g t h = voxelAux . r ;
f l o a t a n i s o t r o p y F a c t o r = voxelAux . g ;
f l o a t a n i s o t r o p y F a c t o r S q u a r e d = a n i s o t r o p y F a c t o r∗ a n i s o t r o p y F a c t o r ;

/ / t r a n s f o r m g r a d i e n t i n t o our sys tem
f l o a t 3 g r a d i e n t = mul (f l o a t 3 x 3 (ob jMa t r i x IT) , voxe l . xyz);

/ / Compute Emiss ion f a c t o r
I e = voxe lEmiss ion ;

/ / Compute A t t e n u a t i o n f a c t o r
A. rgb += r a y S t e p ∗ v o x e l A t t . xyz ;

/ / Compute f o r a l l incoming l i g h t s i t s c o n t r i b u t i o n
/ / C u r r e n t l y we are on l y u s i n g one l i g h t sou rce

/ / t r a n s f o r m l i g h t d i r e c t i o n i n t o our c o o r d i n a t e sys tem
v o x e l L i g h t D i r += 0 . 0 0 0 1 ; / / add some e p s i l o n t o p r e v e n t numer ic prob lems
f l o a t 3 l i g h t D i r = mul (f l o a t 3 x 3 (o b j M a t r i x) , v o x e l L i g h t D ir) ;
l i g h t D i r = n o r m a l i z e (l i g h t D i r) ;

/ / Compute a n i s o t r o p i c s c a t t e r i n g term
f l o a t f t = do t (l i g h t D i r , n o r m a l i z e (rayWor ldDi r)) + a n i s o t r o p y Fa c t o r S q u a r e d ;
f t = 1 − 2 ∗ a n i s o t r o p y F a c t o r∗ f t ;
I s = v o x e l I l l u m ∗ 0 .5 ∗ (1 − a n i s o t r o p y F a c t o r S q u a r e d) / (pow (f t , 1 . 5)) ;

79

Appendix C. Code Listing

/ / Compute new d i r e c t i o n , p o s i t i o n and r e f r a c t i o n i n d ex
f l o a t 3 o ldPos = rayWor ldPos ;
rayWor ldPos = rayWor ldPos + (r a y S t e p / n)∗ rayWor ldDi r ;
rayWor ldDi r = rayWor ldDi r + r a y S t e p∗ g r a d i e n t ;
n += do t (g r a d i e n t , (rayWor ldPos− o ldPos)) ;

/ / compute new volume p o s i t i o n
f l o a t 4 newVp = mul (o b jMa t r i x I , f l o a t 4 (rayWorldPos , 1)) ;
rayVolumePos = newVp . xyz + f l o a t 3 (0 . 5 , 0 . 5 , 0 . 5) ;

/ / save c u r r e n t t r a n s m i s s i o n f a c t o r
f l o a t oldT = T ;

/ / I f we are on a boundary ; can be r e p l a c e d by t e x t u r e look−up
i f (f l o a t (l e n g t h (g r a d i e n t)> 0 . 8) && ! boundary)
{

boundary = t r u e ;

/ / check whenever opaque data i s s p e c i f i e d
bOpaque = voxelOpaqueData . a> 0 ;

/ / compute f r e s n e l term
/ / Th i s i s on l y an app rox ima t i on o f t h e f r e s n e l r e f l e c t i o n term
/ / computa t ion , which was p r e s e n t e d i n t h e t h e s i s .
R = 1 / pow (1 + abs (do t (n o r m a l i z e (g r a d i e n t) , n o r m a l i z e (rayWor ldDi r))) , 2) ;
R = min (pow (R , 3) ∗ voxelAux . a , 1 . 0) ;
T = T ∗ (1 − R) ;

/ / compute r e f l e c t i o n
f l o a t 3 d i r = r e f l e c t (n o r m a l i z e (rayWor ldDi r) , n o r m a l i z e (g r a d i e n t)) ;
f l o a t 3 r e f l e c t i o n C o l o r = texCUBE (envMap , d i r) . rgb ;
I r = l e r p (r e f l e c t i o n C o l o r , v o x e l R e f l e c t i o n D a t a . rgb∗ r e f l e c t i o n C o l o r ,

v o x e l R e f l e c t i o n D a t a . a) ;
} e l s e{

R = 0 ;
}

/ / i f g r a d i e n t i s too smal l , so we cou ld no t be on a boundary
i f (l e n g t h (g r a d i e n t)< 0 . 0 1) boundary = f a l s e ;

/ / Compute combined i n t e n s i t y per v o x e l
I c = s c a t t e r S t r e n g t h∗ I s + R ∗ I r + I e ;

/ / Compute f i n a l i n t e g r a l
I += I c ∗ exp(−A) ∗ oldT ;

/ / check i f we are no t o u t s i d e o f t h e volume
f l o a t 3 temp1 = rayVolumePos> ze ro ;
f l o a t 3 temp2 = rayVolumePos< one ;
f l o a t temp3 = do t (temp1 , temp2) ;
i f (temp3 < 3 . 0) b I t e r a t e = f a l s e ;

}

/ / g e t c o l o r f rom env i ronmen t map as i f ray i s coming ou t
f l o a t 3 envColor = l e r p (voxelOpaqueData . rgb , texCUBE (envMap , rayWor ldDi r) . rgb ,

1 .0 − f l o a t (bOpaque)) ;

/ / Compute r e s u l t i n g c o l o r
vOUT . xyz = envColor ∗ exp(−A) ∗ T + I ;
vOUT . a = 1 ;

/ / Need t h i s here t o p r e v e n t p o s s i b l e o v e r f l o w prob lems
vOUT . rgb = min (vOUT . rgb , 65504) ;

/ / r e t u r n
re turn vOUT;

}

80

L IST OF FIGURES

1.1 Glass block with embedded SIGGRAPH logo. The complex behavior

of refraction is combined with a spatially varying attenuation inside the

letters. Note the total reflection on the block boundaries. 10

1.2 Rounded cube consisting of three different glass layers. Light simulator

is capable to compute the irradiance distribution inside the object volume

providing a nice sparkle like structures during the rendering phase. . . .11

2.1 One of the first synthetic image showing caustics, refractions and reflec-

tions [Arv86] . 14

2.2 (a) Realistic refractions and caustics rendered at 2.5 frame per second

on 8 client machines [WBS+02] (b) Caustic computed by the photon

mapping approach described in [Jen01] 15

2.3 Photon mapping computed on the GPU by [PDC+03] 16

3.1 Wine glass object consisting of 128x128x128 voxels. (a) Refractive

index field was pre-smoothed before computing the gradients. (b) No

smoothing: Glass appears blocky. Note how the smooth filtering unin-

tendedly expands the boundaries. 20

3.2 (a) A real world photo showing the refraction effect. The light rays are

bent as they cross from water to air. (b) Volume caustics created by

propagating light particles through a glass sphere. Notice how the light

rays are being focused [Jen01]. 22

3.3 (a) Scattering occurs when light originating at the light sourcescatters

on material impurities, e.g. dust particles. (b) Wine glass showing re-

fraction and attenuation. Wine attenuates green and blue components of

the light resulting in a red colored fluid. 23

3.4 Black glass sphere reflecting the environment. The sphere’s material

absorbs almost the whole light energy such that only the reflection on

the surface is visible. (a) Native reflection (b) Fresnel reflection. Note

the use of fresnel equations improves the realism of the scene. 24

81

List of Figures

3.5 (a) Real world photo of dispersion phenomenon on a prism [MS] (b)

Emulated dispersion effect with a three-pass computation of color com-

ponents red, green and blue. 25

4.1 ¡¡¡¡¡¡¡ .mine Snell’s law; The propagation time of light from P to Q is

minimal, if the sines of the ray angles in different media are in =======

Snell’s law; The propagation time of light from P to Q is minimal, if the

sines of the ray angles in different media are in ¿¿¿¿¿¿¿ .r48 proportion

to the refractive indices. 30

4.2 2D illustration of our complex image formation scenario – due to inho-

mogeneous material distribution, light rays and viewing rays are bent on

their way through thescene volumeV . Light rays always travels orthog-

onally to the light wavefronts. Light wavefronts are the iso-surfaces of

constant travel time from the light source. 33

4.3 Adaptive wavefront refinement. (a) 2D illustration: the wavefront is

represented by particles (red dots) that are connected to form a wavefront

(blue lines). While advancing through the voxel volume (shown in gray)

the wavefront is tessellated such that its patches span less than a voxel.

(b) 3D illustration of the tessellation for one wavefront patch. 35

4.4 The intensity law of geometric optics (left) and its discretized version

(right) in the form of astream tube. The product of area and differential

irradiance is constant along a tube of rays. 37

5.1 Glass sphere (1283 voxels) refracting the viewing rays. (a) Refraction

only (b) Refraction combined with attenuation; red and blue light com-

ponents are attenuated, producing green colored glass. 40

5.2 (a)Lr becomes active on the material boundary between glass and air,

and is responsible for reflections of the environment (Fresnel reflections)

(b) Additionally,Ls andLe have become active. Scattering gives a feel-

ing of impurities inside the glass. A small blob in the center of the glass,

emitting radiance, gives an impression of phosphorescence. 42

6.1 (a) The refractive index volume of the glass is approached by a spherical

wavefront from the right. The adaptive tessellation of the wavefront is

also visible. (b) When it passes through the object, beautiful caustic

patterns appear in its irradiance distribution. 52

82

List of Figures

6.2 Basic volume ray casting of a refractive object. For each pixel of the im-

age plane, a viewing ray is propagated through the volume. The samples

are interpolated and composed to produce the resulting pixel value. . . 53

6.3 Refractive object and its proxy geometry. (a) Cube/Box as a bounding

primitive. (b) Use of a sphere mesh as bounding primitive. 54

6.4 Work-flow of our rendering system. 56

7.1 Comparison between a ray-traced image rendered with the Persistence

of Vision raytracer (POV-Ray) (a) and our algorithm (b). The differences

in the refraction and shadow size as well as the slightly displaced caustic

pattern are due to smoothing of the refractive index field. 58

7.2 (a) Glass block with embedded SIGGRAPH logo made up of varying re-

fraction and attenuation materials, 14.7 FPS, (5 objects in scene). Note

the surface reflections and the total reflections within, as well as the

rounded cube being visible through the glass block. (b) Complex re-

fraction patterns in the glass, 10.3 FPS, (5 objects in scene). 60

7.3 (a) Rounded cube composed of three differently colored and differently

refracting kinds of glass, showing scattering effects and caustics in its

interior, 6.5 FPS. (b) Stanford bunny [sta] with spatially varying atten-

uation, leading to the impression of an amber-like bunny with black

embeddings. Since the object is illuminated from underneath, colored

volume caustics and shadows are visible in the anisotropically scatter-

ing smoke and glass, 13 FPS. – Note that there are 5 objects rendered

simultaneously. 60

7.4 (a) Colored sphere rendered into an HDR environment map, showing

slight emission in addition to all other effects, at 26.2 FPS. (c) A screen-

shot of a wine glass scene. The time to compute the light distribution

was around 7 seconds. The time required to render the object is around

0.04 seconds/25 FPS. 61

83

List of Figures

7.5 (a) Scene showing up to 9 objects simultaneously. The big sphere in

the middle has a resolution of1283 voxels, while the small spheres sur-

rounding it are composed of only323 voxels. The rendering speed in this

scene varies between 9 FPS (when the big sphere fills out the complete

viewport) and 60 FPS (whenever only the small spheres are visible).

Frame rate of the screenshot is 15.2 FPS. (b) A screenshot from the mu-

seum scene, showing all refractive objects simultaneously . The objects

exhibit various optical effects. Their resolution is1283 voxels, with up

to 6 volume data textures for each object. The rendering speed is 10.8

FPS. 61

A.1 A birefringence crystal (calcite) showing the double refraction of thelight. 66

A.2 Formation of an ordinary and extraordinary ray when an incident ray

encounters an anisotropic medium [GS04]. 67

A.3 The electric field of ane-ray is not perpendicular to the wave propagation

direction. The consequence is that the energy propagation and wave

propagation vectors are not parallel, i.e.~te ∦ ~se. (Note that this figure

has no directly verifiable physical significance.) 68

84

BIBLIOGRAPHY

[Arv86] James R. Arvo. Backward Ray Tracing. InACM SIGGRAPH ’86 Course

Notes - Developments in Ray Tracing, volume 12, 1986.

[BD02] David Benson and Joel Davis. Octree textures. InSIGGRAPH ’02: Pro-

ceedings of the 29th annual conference on Computer graphics and interac-

tive techniques, pages 785–790, New York, NY, USA, 2002. ACM Press.

[Bli82] James F. Blinn. Light reflection functions for simulation of clouds anddusty

surfaces. InSIGGRAPH ’82: Proceedings of the 9th annual conference on

Computer graphics and interactive techniques, pages 21–29, New York,

NY, USA, 1982. ACM Press.

[BM98] G. Beyerle and I. S. McDermid. Ray-tracing formulas for refraction and

internal reflection in uniaxial crystals.Applied Optics, 37:7947–7953, 1998.

[BW99] Max Born and Emil Wolf.Principles of Optics, seventh edition. Cambridge

University Press, 1999.

[CHH02] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. InHWWS

’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware, pages 37–46, Aire-la-Ville, Switzerland, Switzerland,

2002. Eurographics Association.

[DBB06] Phil Dutre, Kavita Bala, and Philippe Bekaert.Advanced Global Illumina-

tion, 2nd Edition. A K Peters, Natick, MA, 2006.

[EAMJ05] Manfred Ernst, Tomas Akenine-M̈oller, and Henrik Wann Jensen. Interac-

tive rendering of caustics using interpolated warped volumes. InGI ’05:

Proceedings of Graphics Interface 2005, pages 87–96, School of Computer

Science, University of Waterloo, Waterloo, Ontario, Canada, 2005. Cana-

dian Human-Computer Communications Society.

[GS04] Stephane Guy and Cyril Soler. Graphics gems revisited: fast and physically-

based rendering of gemstones.ACM Trans. Graph., 23(3):231–238, 2004.

85

Bibliography

[GWS04] J. G̈unther, I. Wald, and P. Slusallek. Realtime caustics using distributed

photon mapping. InRendering Techniques, pages 111–121, June 2004.

(Proceedings of the 15th Eurographics Symposium on Rendering).

[HBSL03] M.J. Harris, W.V. Baxter, T. Scheuermann, and A. Lastra. Simulation of

cloud dynamics on graphics hardware. InProc. of Graphics Hardware,

pages 92–101, 2003.

[HJ41] L. Henyey and Greenstein J. Diffuse radiation in the galaxy.Astrophys.

Journal, 93:70–83, 1941.

[HQ07] Wei Hu and Kaihuai Qin. Interactive Approximate Rendering of Reflec-

tions, Refractions, and Caustics.IEEE TVCG, 13(1):46–57, 2007.

[HS01] Z. S. Hakura and J. M. Snyder. Realistic reflections and refractions on

graphics hardware with hybrid rendering and layered environment maps. In

Proceedings of the 12th Eurographics Workshop on Rendering Techniques,

pages 289–300, London, UK, 2001. Springer-Verlag.

[IZT+07] I. Ihrke, G. Ziegler, A. Tevs, C. Theobalt, M. Magnor, and H.-P.Seidel.

Eikonal rendering: Efficient light transport in refractive objects.ACM

Trans. on Graphics (Siggraph’07), to appear, August 2007.

[Jen96] Henrik Wann Jensen.Global Illumination Using Photon Maps. Springer-

Verlag, London, UK, 1996.

[Jen01] Henrik Wann Jensen.Realistic image synthesis using photon mapping. A.

K. Peters, Ltd., Natick, MA, USA, 2001.

[KMS05] G. Krawczyk, K. Myszkowski, and H.-P. Seidel. Perceptualeffects in real-

time tone mapping. InProc. of Spring Conference on Computer Graphics,

pages 195–202. ACM, 2005.

[KvH84] James T. Kajiya and Brian P. von Herzen. Ray tracing volume densities. In

SIGGRAPH ’84: Proceedings of the 11th annual conference on Computer

graphics and interactive techniques, pages 165–174, New York, NY, USA,

1984. ACM Press.

[MH92] Don Mitchell and Pat Hanrahan. Illumination from curved reflectors. In

SIGGRAPH ’92: Proceedings of the 19th annual conference on Computer

graphics and interactive techniques, pages 283–291, New York, NY, USA,

1992. ACM Press.

86

Bibliography

[MM02] Vincent C. H. Ma and Michael D. McCool. Low latency photon mapping

using block hashing. Technical report, Aire-la-Ville, Switzerland, Switzer-

land, 2002.

[MS] R. Merlino and L. Somantri. The wavy face of light: Darkness, shadows,

colors and fringes. http://www.physics.uiowa.edu/˜umallik/adventure/phys-

optics/lightwave.html. [Online; accessed 30-May-2007].

[Ohb03] E. Ohbuchi. A real-time refraction renderer for volume objects using a

polygon-rendering scheme. InProc. of CGI, pages 190–195, 2003.

[PBMH02] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray

tracing on programmable graphics hardware. InSIGGRAPH ’02: Proceed-

ings of the 29th annual conference on Computer graphics and interactive

techniques, pages 703–712, 2002.

[PDC+03] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen,

and Pat Hanrahan. Photon mapping on programmable graphics hardware.

In SIGGRAPH/EUROGRAPHICS Workshop On Graphics Hardware, pages

41–50, 2003.

[Pri63] P. Pringsheim.Fluorescence and phosphorescence.New York : Interscience

Publishers, second edition, 1963.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.Numeri-

cal Recipes in C. Cambridge University Press, 1992.

[Pur04] Timothy J. Purcell.Ray tracing on a stream processor. PhD thesis, 2004.

Adviser-Patrick M. Hanrahan.

[SFD00] Y. Sun, F.D. Fracchia, and M.S. Drew. Rendering diamonds. In Proc. of the

11th WSCG, pages 9–15, 2000.

[SHB99] Milan Sonka, Vaclav Hlavac, and Roger Boye.Image Processing, Analysis

and Machine Vision. PWS Publishing, second edition, 1999.

[SK07] Musawir A. Shah and Jaakko Konttinen. Caustics mapping: An image-

space technique for real-time caustics.IEEE Transactions on Visualiza-

tion and Computer Graphics, 13(2):272–280, 2007. Member-Sumanta Pat-

tanaik.

87

Bibliography

[SL96] Jos Stam and Eric Languénou. Ray tracing in non-constant media. InPro-

ceedings of the eurographics workshop on Rendering techniques ’96, pages

225–ff., London, UK, 1996. Springer-Verlag.

[sta] The Stanford 3D Scanning Repository.

http://graphics.stanford.edu/data/3Dscanrep. [Online; accessed 10-

January-2007].

[SWS02] J̈org Schmittler, Ingo Wald, and Philipp Slusallek. Saarcor: a hardware

architecture for ray tracing. InHWWS ’02: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 27–

36, Aire-la-Ville, Switzerland, Switzerland, 2002. Eurographics Associa-

tion.

[TTW94] David C. Tannenbaum, Peter Tannenbaum, and Michael J. Wozny. Polar-

ization and birefringency considerations in rendering. InSIGGRAPH ’94:

Proceedings of the 21st annual conference on Computer graphics and inter-

active techniques, pages 221–222, New York, NY, USA, 1994. ACM Press.

[WBS+02] I. Wald, C. Benthin, P. Slusallek, T. Kollig, and A. Keller. Interactiveglobal

illumination using fast ray tracing. InProc. of Eurographics Rendering

Workshop, pages 15–24, 2002.

[WD06] C. Wyman and S. Davis. Interactive image-space techniques forapproxi-

mating caustics. InProceedings of ACM I3D, pages 153–160, 2006.

[WK90] Lawrence B. Wolff and David J. Kurlander. Ray tracing with polarization

parameters.IEEE Comput. Graph. Appl., 10(6):44–55, 1990.

[WS03] M. Wand and W. Strasser. Real-time caustics.Computer Graphics Forum

(Proc. of Eurographics 2003), pages 611–622, 2003.

[WTP01] Alexander Wilkie, Robert F. Tobler, and Werner Purgathofer. Combined

rendering of polarization and fluorescence effects. InProceedings of the

12th Eurographics Workshop on Rendering Techniques, pages 197–204,

London, UK, 2001. Springer-Verlag.

[Wym05a] C. Wyman. An approximate image-space approach for interactive refrac-

tion. ACM Trans. Graph., 24(3):1050–1053, 2005.

[Wym05b] C. Wyman. Interactive image-space refraction of nearby geometry. InPro-

ceedings of GRAPHITE, pages 205–211, 2005.

88

Bibliography

[ZTTS06] G. Ziegler, A. Tevs, C. Theobalt, and H.-P. Seidel. On-the-fly point clouds

through histogram pyramids. InProc. of VMV, pages 137–144, 2006.

89

