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Abstract

Using Epipolar Image Analysis in the context of the corre-
spondence finding problem in depth reconstruction has sev-
eral advantages. One is the elegant incorporation of prior
knowledge about the scene or the surface reflection prop-
erties into the reconstruction process. The proposed frame-
work in conjunction with graph cut optimization is able to
reconstruct also highly specular surfaces. The use of prior
knowledge and multiple images opens new ways to recon-
struct surfaces and scenes impossible or error prone with
previous methods. Another advantage is improved occlu-
sion handling. Pixels that are partly occluded contribute to
the reconstruction results. The proposed shifting of some
of the computation to graphics hardware (GPU) results in
a significant speed improvement compared to pure CPU-
based implementations.

1 Introduction

Solving the passive multi-view 3D reconstruction problem
has and still is one of the most worked on problems in the
computer vision community. Motivated by the human abil-
ity to easily perceive a 3D world with only two “cameras”,
many different approaches have been developed. However,
most approaches rely on strong assumptions on the BRDF
[1] of the scene objects e.g. to be lambertian which is not
true in general. For example shiny materials like plastic or
metals violating this assumption cause artifacts and errors
in the reconstruction results. In our work we formulate the
correspondence finding problem in terms of the Epipolar
Image analysis (EPI). The use of prior knowledge about re-
flectance properties in general opens up ways to reconstruct
surfaces and scenes impossible or error prone with previous
methods. The main contribution of the presented approach
is the formulation of the dense depth map estimation prob-
lem when prior knowledge about reflectance properties of
the surfaces is available.

Figure 1: The left image shows the rendering of the Happy
Buddha model [4] with a plastic material as seen from cam-
era 5. 10 different views are used in total for reconstruction.
The right image shows the reconstruction results obtained
with the proposed method. The statue is illuminated with
three area light sources that cause multiple specularities and
interreflections. However, the reconstruction result contains
almost no artifacts.

We pose the reconstruction process as an energy min-
imization problem and solve it via the well known graph
cut algorithm, first used in this context by [2] and [3].
For the implementation we shifted some computations to
the Graphics Hardware (GPU) achieving significantly im-
proved runtimes over a CPU only implementation. Some
results and a comparison to the results of previous meth-
ods are presented (see e.g. Figure 1). Since the proposed
method is a passive multi view reconstruction approach
the depth map estimation can be used to analyze dynamic
scenes as well.

2 Related Work

There are numerous publications in the field of multi-view
3D reconstruction. Most of the work done so far, assumes
that the BRDF of the surface is lambertian meaning spec-
ular or anisotropic reflectance behavior causes errors in the
reconstruction result.
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Like some of the works presented before, we also use
graph cut optimization to find a dense depth map estima-
tion. Applying graph cuts to solve the correspondence find-
ing problem for multiple views handling occlusion was first
proposed in [3]. The data term used in this work is how-
ever based on the color constancy principle, which becomes
problematic for non-lambertian surfaces. Occlusion is also
only considered between neighboring images and is imple-
mented as a check that prevents estimating the depth of
partly occluded pixels. In our approach we implemented
occlusion handling directly in the data energy term. Being
less conservative, our proposed occlusion handling finds re-
sults for partially occluded pixels. Another related work
using graph cuts was presented in [5]. It is an extension of
the multi-view graph cut algorithm to include the detection
of background into the reconstruction process. However,
handling of specular surfaces is not covered.

Another work applying the graph cut algorithm in this
field was presented by Davis et al. [6]. They achieve good
depth estimations of nearly arbitrary BRDF surfaces using
controlled variation of the scene illumination assuming light
transport constancy. However, the depth map estimation
only works for static scenes, since multiple images with
different lighting are needed. Another approach to handle
specularities is to remove specular pixels from the recon-
struction process [7, 8] or to handle outliers and occlusions
via hidden variables in the reconstruction process [9].

Other approaches for multi-view 3D reconstruction work
by finding the scene geometry rather than computing depth
maps. A prominent example is the Space Carving approach
[11]. Here the space is discretized into voxels which are
then sequentially tested for color constancy. There are also
numerous extensions to this approach e.g. [12, 13]. The first
work uses priors to improve the results and the second deals
with specular highlights and textureless regions. Lately, a
new approach using Surfels to both reconstruct the surface
of an object and view independent reflectance maps [14]
was introduced. Surfels are also used in [10]. The authors
propose a voting approach to estimate the parameters of the
Phong BRDF model to account for the reflection properties
of the surface. The discretization of the resulting geome-
try however introduces additional artifacts into the model
based results. A different approach for computing the un-
derlying model for lambertian plus specular surfaces is the
method published in [15]. Here the reconstruction for non-
lambertian surfaces is achieved via a rank constraint on the
radiance tensor.

Our algorithm uses EPI analysis, specifically Epipolar
Volumes built from a multi camera setup to perform depth
estimation. This has first been introduced in the context
of structure from motion by [16]. Recent work by [17]
expanded the approach to handle occlusions and speculari-
ties. However, their approach does not estimate the depth of

Figure 2: Cut through the Epipolar Volume V created from
the set of rectified images I. The images are stacked so
that the xy-plane at c = i is defined by image Ii, with i ∈
{1 . . .N}.

specular pixels but tries to handle them as invalid outliers.

3 Problem Statement

Given an Epipolar Volume constructed from rectified cam-
era images of a scene (e.g. Figure 2), we reconstruct depth
maps incorporating any knowledge available about the re-
flectance properties of objects found in the scene and as-
sumed piecewise smooth surfaces. Rectified meaning that
scanlines of the images correspond to epipolar lines of the
multi camera recording setup . This problem can be posed
as a minimization of an energy functional on lines defined
in the Epipolar Volume and a neighborhood regularization.
In a second step we show how to add occlusion handling as
a straight forward extension of the proposed algorithm.

Assume N rectified images I of a scene taken simulta-
neously from N different viewpoints on the same baseline.
Intuitively speaking, from the image set I we can then cre-
ate an epipolar volume V as shown in Figure 2 by defining
a new 3D space using the image coordinates x, y and the
camera position c on the baseline as the third dimension.
Given a point P in the scene, this point is then found on a
line lP in V . The important observation is that the slope
λp of lP is inversely proportional to the depth of P. Thus if
λ = 0, Pz = ∞. Note that λ is equivalent to disparity in
the special case of N = 2.

The color values on lP are defined by the BRDF of P ,
fr(θi, φi, θr, φr). Thus we get

lP (i) = fr(θi(i), φi(i), θr(i), φr(i)) ∀i ∈ {1 . . .N} (1)

For the line lP describing P in the Epipolar Volume the fol-
lowing assumptions hold. The lighting setup for the scene,
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the local coordinate system for each P and the associated
BRDF are constant. Thus the variations in the color val-
ues for the observations of P are dependant on the viewing
directions only. Applying assumptions or prior knowledge
about this variations to build a vector f̂r then allows to pose
the problem of estimating the depth of P as minimizing an
energy functional of the form

E(p, λ) = d(lP , f̂r) (2)

where d(·, ·) is a distance measure between two vectors.
Finding λ∗

P is achieved by solving

λ∗

P = argmin
λ

E(p, λ) (3)

The dense depth map for a given image is then built by
solving Equation 3 for each pixel in the image under some
neighborhood regularization constraints. In particular we
use the assumption that the BRDF varies smoothly at λ∗

P to
reconstruct also non-lambertian surfaces.

4 Epipolar Volumes

For a scene at time t, the radiance observed at point x from
a given direction r is described by the Plenoptic function
[18] O(x, r); O : R

3 × S
2 → R

d where S
2 is the unit

sphere of directions in R
3 and d = 1 for intensity or d =

3 for color images. Assuming the pinhole camera model,
an image I(c) = O(c, r) is thus defined by the Plenoptic
function with the camera center c over a subset of S

2 which
is determined by the field of view and the viewing direction
v of the camera.

Given camera centers c ∈ lc with

lc = c0 + αd (4)

with d ⊥ v and without loss of generality α ∈ R
+. We

define the Epipolar Volume V ∈ R
2 × R

+ as

V = I(lc) = O(lc, r) (5)

as a subset of P .
Using this definition, images of a scene created from

cameras placed on the same baseline lc are samples of V

at discrete points on the c-axis. Specifically, we define lc
as the positive c-axis of the Epipolar Volume resulting in a
sampled Volume as shown in Figure 2.

As described, all cameras are placed on lc and have the
same viewing direction v. The projections of a scene point
P vary only in one dimension, which is parallel to lc since
the images are then rectified by definition [19].

4.1 Depth

Assume a point P ∈ R
3 in the scene visible from all cam-

eras ci. Let the points pi ∈ R
2 be the projections of P in

I(ci). As introduced before every pi corresponds to a di-
rection from ci to P . Then the lines defined by ci and the
direction associated with pi intersect in P (see Figure 3).
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Figure 3: Triangulation of a point P in the scene. The rays
defined by p1 and p2 intersect at P. The distance between P
and the camera plane defined by v and lc is denoted as Pz

To explore the distribution of the p in V we consider
the plane that is formed by lc and P . In this plane, the
direction p reduces to the angle ρ and Px, Pz > 0 describe
the position of P . We find

tan ρ =
Px − c

Pz

(6)

for any point c on lc. Given two camera centers c1 and c2

on lc with c1 = c2 + δ, δ > 0 we define

λ = tan ρ2 − tan ρ1 =
δ

Pz

(7)

With definition (5) and setting δ = 1 we conclude that ci is
the c-axis coordinate in V and thus the p form a line lP in
V where the slope λ of lP is inversely proportional to the
distance Pz between P and the camera base line.

lP = λ(c + Px) (8)

Conversely, the depth of a point P is defined by lP in
V . Searching for lP in V and computing λ determines the
depth of P . In our implementation we exploit this property
to pose the correspondence search problem as an energy
minimization. Since we use graph cuts to solve the NP-hard
problem, we have to discretize the possible depth solutions
first. This is done by specifying an upper and lower limit
for λ and interpolating in between.
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Figure 4: Occlusion in the Epipolar Volume. Since the slope
λ is inversely proportional to the depth of a surface point P,
P2 occludes P1 at the intersecting camera c3. Thus when
extracting lp1 the according value is invalidated.

4.2 Occlusion

Pixels that are occluded in some views violate the assump-
tion that P is found on line lP in the Epipolar Volume.
However, occlusions in Epipolar Volumes have well defined
properties. This allows to estimate depth values also for par-
tially occluded pixels. If a point P1 is occluded by a point
P2 then the following assumptions hold (see Figure 4).

1. P2 has a smaller distance to the camera baseline than
P1

2. The corresponding lines lP2
and lP1

intersect at the oc-
clusion

From (7) we conclude the criterion λ1 < λ2 can be used
for occlusion checking. Let the set of points poccluded define
the points on lP that are occluded as defined above. Then
we define

l̂P = lP \ poccluded (9)

as the line with occluded pixels removed. The assumption
that P is defined by l̂P then also holds in the case of occlu-
sion.

In the reconstruction process we implement occlusion
detection in the data term of the energy function. From the
current solution, we can check the depth neighborhoods for
each pixel in the Epipolar Volume and decide if the pixel is
occluded in one or more images. If occluded, the pixel value
is invalidated for the occluded images and accordingly han-
dled in the energy computation. Partly occluded pixels are
thus considered in depth reconstruction while depth values
of pixels visible in one view only are extrapolated from their
neighbors.

4.3 BRDF Models

The main contribution of this work is the way prior knowl-
edge and assumptions about the BRDFs found in the scene
are introduced in the reconstruction process. Utilizing prior

knowledge significantly improves the quality of the recon-
struction result and allows reconstructing surfaces with a
wider range of materials than previously possible.

The Epipolar Volume defines a function lP , describing
the color value variation dependend on the camera position
c. In this section we focus on how these values vary along
the lP . Generally the values of a point P are defined by its
BRDF. The BRDF is itself dependent on the local coordi-
nate system associate with P . For the Epipolar Volume at
a given point in time, we find that the local coordinate sys-
tems, the BRDF and the lighting setup L are constant for all
lP . Thus the values depend only on the different viewing
directions pi. This leads to the conclusion that the values
on lP are samples of the BRDF over the viewpoints under a
given lighting setup.

In this work we explore the potential of our proposed
approach to the calculation of dense depth maps for highly
specular and anisotropically reflecting surfaces. We pro-
pose the assumption that the BRDF of any point P varies
smoothly in the range of lc. This already gives good results
for shiny objects made of metals and plastic. There is fur-
ther no connection on BRDFs of neighboring points which
allows for reconstructing objects made of multiple materi-
als. Under this assumption, searching for lP can be posed
as a energy minimization that measures the unsmoothness
of lP . Specifically we use the term

Dp = var(
δ

δc
f(lλP )) (10)

where var(·) denotes the statistical variance and f is the
line in the epipolar volume which is defined by the pixel
position and depth label. Results for our GPU/CPU imple-
mentation of the described energy function are presented in
Section 6.

5 Algorithm and Implementation

To implement the energy minimization we propose a mod-
ification of the α-expansion multi label graph cut method
introduced in [2]. In order to use this optimization algo-
rithm the resulting depth values have to be discretized. Let
L define the set containing the discrete labels. The cardi-
nality of L determines the quality of the computed depth
image. Thus to improve results a finer discretisation can be
used at the cost of additional computation time.

The α-expansion graph cut algorithm is divided in sev-
eral steps. First for each depth label a graph is built, encod-
ing both pixel neighborhood smoothness and pixel depth fit.
Then in each iteration the minimal cut on the graph is com-
puted using the MAXFLOW algorithm [20].

Specifically, let G = (V, E) be a graph constructed for
the energy minimization problem and m be the mapping
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which maps pixels to labels. For each label α ∈ L compute
in each iteration the energy function

m̂ = argmin E(m′) (11)

where m′ is the mapping obtained after the α-expansion
step on a graph G by using the current labeling function m.
The energy function to minimize has the following form:

E(f) =
∑

(p,q)∈N

Vp,q(mp, mq) +
∑

p∈P

Dp(lP ) (12)

where N is the set of interacting pairs of pixels. Typically
the neighborhood N is built from adjacent pixels, but it can
be arbitrary. D is the data term introduced in Section 4.3.
The term V regularizes the neighborhood and is discussed
in more detail in Section 5.1.

Looking at D reveals that it can be computed indepen-
dently for each pixel. To accelerate it we shifted the com-
putation on the GPU. Modern graphics hardware allows us
to reprogram its pipeline so we can use it for our own pur-
pose. The GPU’s fragment shader operates in parallel on
each pixel and is programmed to compute the Dp. Since
the graph has always got a constant number of edges ep

with weight Dp(l), we can compute these weights on the
GPU for all edges ep. Utilizing the GPU reduces the run-
time to a third in comparison to the time needed for a CPU
only implementation (see Table 1).

Table 1: Runtimes of the algorithm executed on Intel Pen-
tium 4 with 2.4GHz 512KB Cache and 2GB RAM. The
GPU is a Nvidia GeForce 6800 GT (NV45) graphic chip.
The table shows time needed to accomplish one graph cut
cycle on the whole image volume of the elephant scene for
16 labels.

Resolution dT CPU dT GPU
128x128x10 55 sec 22 sec
256x256x10 217 sec 71 sec
512x512x10 749 sec 233 sec

5.1 Neighborhood

Assuming the surface is piecewise smooth makes the opti-
mization algorithm more robust against outliers and finds
information in parts of the surface that have little or no
texture information. To account for this we introduce a
neighboring term based on the Pott’s Model as proposed
in [2]. Because of complexity reasons, the neighborhood
is restricted to each camera view but could be extended to
neighboring views as well. For the neighborhood term V ,

computed for each pair of neighboring pixels (p, q) ∈ N ,
we used the following term

Vp,q(mp, mq) =











0 |mp − mq| < d1

2K d1 ≤ |mp − mq | < d2

K else

(13)

The constant K determines the strength of the neighborhood
regularization. Constants d1, d2 control the smoothness of
the result and the handling of depth discontinuities.

5.2 Occlusion

We implement the α-expansion graph cut algorithm to find
the dense depth maps by global energy minimization simi-
lar to [2]. The difference in the optimization however is the
computation of the data term in the energy function. Unlike
previous methods, we do not use a separate term for visi-
bility but handle occlusion directly in the data term. This
has the advantage that partly occluded pixels are not omit-
ted from reconstruction. To achieve this, we extend the α-
expansion graph cut algorithm in the following way.

• Initialize the reconstruction volume to λmax

• Solve the α-expansion iteration for the ordered labels
from λmax to λmin for all cameras. Thus in each step
the next depth value is probed for the complete vol-
ume.

• In each α step extract for the current λα and each p the
line lP

• Invalidate pixels on lP with λ > λα + M to get l̂p

• Computing DP (l̂p) then readily includes occlusion
handling as discussed in Section 4.2

The constant M is introduced for robustness reasons and
is set in relation to the cardinality of the labelset L, e.g.
M = dlog λmaxe. The iteration continues until Itermax

is reached or no change in the energy occurs during a com-
plete α cycle.

In each iteration we compute the α-expansion step for
all cameras. Since the initial value of each pixel is set to
the closest possible position, there is no occlusion culling
for pixels in the first M iterations. Under the assumption of
decreasing energy as the true disparity is approached (see
Figure 5), we conclude most pixels that have reached their
lowest possible energy are truly at the corresponding depth
in the scene. Thus it is plausible to remove pixels from
lP that have higher label values during the reconstruction
process to form the l̂P . Although there are pixels violating
this assumption, later iterations are probable to resolve the
errors introduced.
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Figure 5: The plot shows the mean energy distribution for
the pixels of the elephant scene that have their minimum at
disparity λ = 29.

For the examples presented in this work, we found that
this assumption is strong enough to reconstruct objects with
occlusion in the proposed way. The validity of the assump-
tion about the energy functions is further underlined by the
observed decreasing number of labels changed in each it-
eration. All examples needed no more than three cycles to
find the global energy minimum.

6 Results

Our test set consists of synthetic objects raytraced with
POVRay [21] and ground truth. The scenes are illuminated
with multiple light sources to simulate a complex lighting
setup. No information about the lighting setup was incor-
porated in the reconstruction results. We applied three rep-
resentative non-lambertian materials to the objects to com-
pare performance to the well-known graph cut algorithm in-
troduced in [3]. The materials include plastic, chrome and
an anisotropically reflecting brushed metal. Results were
computed on image sizes of 512× 512 from 10 views. The
cameras were equally spaced on the same baseline perpen-
dicular to the viewing direction.

Figure 6 shows the elephant model rendered with a
chrome material. We used 16 labels for the depth recon-
struction. The results obtained with our novel approach give
improved results over the standard color constancy assump-
tion. Most of the artifacts found with the constant color
energy term have vanished. Other result on reconstructing
shiny surfaces like the plastic Happy Buddha model [4] are
shown in Figure 1 and the Dragon model with a anisotrop-
ically reflecting brushed metal surface in Figure 7. For the
Buddha model we used 16 and for the dragon model 32
labels for reconstruction. Again the results improve consid-
erably if our proposed smoothness assumption defined on
lines in the epipolar volume is used for the reconstruction.

7 Discussion and Future Work

The main contribution of this work is the integration of prior
knowledge about the surface reflection properties in the re-
construction process. We showed how to enhance the ex-
isting graph cut reconstruction method using Epipolar Vol-
umes to perform multi view reconstruction utilizing this in-
formation. Improved reconstruction results in comparison
to standard color constancy methods have been obtained for
shiny surfaces. The proposed method is also fit to handle
more complex scenes when more information, e.g. the en-
vironment map, the BRDF or the lighting setup is known.
Using both CPU and GPU in the implementation of our al-
gorithm results in accelerated reconstruction runtimes. In
comparison to a CPU only implementation we achieve a
speedup factor of three. Since we use graph cuts to opti-
mize the energy function we have to discretize the depth.
Thus the quality of the reconstructed volume depends on a
sufficient discretization of the result space.

In future work, we like to explore more ways to incorpo-
rate prior knowledge like the light setup or the environment
map. First tests to reconstruct perfect mirroring surfaces
have already shown promising results. For this reconstruc-
tion problem, the normals of the surface must also be es-
timated which causes problems when using discrete opti-
mization methods. Future research on other continuous op-
timization methods to solve this problem are an interesting
application of the proposed framework.
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